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“Forty-two!” yelled Loonquawl. “Is that all you’ve got to show for seven and a half

million years’ work?”

“I checked it very thoroughly,” said the computer, “and that quite definitely is the

answer. I think the problem, to be quite honest with you, is that you’ve never

actually known what the question is.”

Adams, D., The Hitchhiker’s Guide to the Galaxy.

Pan Books, London, UK.
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Résumé

Les systèmes d’imagerie médicale ultrasonore ont considérablement amélioré le di-

agnostic clinique par une meilleure qualité des images grâce à des systèmes plus

sensibles et des post-traitements. La communauté scientifique de l’imagerie ul-

trasonore a consenti à un très grand effort de recherche sur les post-traitements

et sur le codage de l’excitation sans s’intéresser, outre mesure, aux méthodes de

commande optimale. Ce travail s’est donc légitimement tourné vers les méthodes

optimales basées sur l’utilisation d’une rétroaction de la sortie sur l’entrée. Pour

rendre applicable ces méthodes, ce problème complexe de commande optimale a

été transformé en un problème d’optimisation paramétrique sous-optimal et plus

simple. Nous avons appliqué ce principe au domaine de l’imagerie ultrasonore :

l’échographie, l’imagerie harmonique native et l’imagerie harmonique de contraste

avec ou sans codage de la commande.

La simplicité de l’approche nous a permis, par une modification de la fonction de

coût, de l’adapter à l’imagerie harmonique. Cette adaptation montre que la méthode

peut être appliquée à l’imagerie ultrasonore en générale.

Aujourd’hui, les enjeux de l’imagerie ultrasonore portent non seulement sur les

traitements des excitations ou des images mais aussi sur les capteurs. Ce point

nous a conduit naturellement à rechercher la commande optimale des transducteurs

capacitifs (cMUT) afin de les adapter à une utilisation plus large en imagerie ultra-

sonore codée. Nos méthodes de compensation et de codage par commande optimale

procurent des résultats très prometteurs qui vont au delà de nos espérances.

Le champ d’applications de nos méthodes de codage optimal est large et nous n’en

voyons pas forcément encore toutes les limites. L’atout majeur de nos approches

est leur simplicité d’utilisation et d’implémentation. En effet, elles ne nécessitent

pas d’informations a priori difficilement accessibles sur les outils utilisés ou milieux

explorés. Notre système s’adapte automatiquement aux variations qui peuvent être

liées au vieillissement du capteur ou à la modification du milieu exploré.

Mots clés: Boucle fermée, commande optimale, optimisation, imagerie ultrasonore,

système adaptatif.
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Abstract

Medical ultrasound imaging systems have greatly improved the clinical diagnosis by

improving the image quality thanks to more sensitive systems and post-processings.

The scientific community has made a great effort of research on post-processing and

on encoding the excitation. The methods of the optimal control have been neglected.

Our work has focused on the optimal methods based on the feedback from output

to input. We have transformed the complex problem of optimal control into an

easier suboptimal parametric problem. We apply the principle of optimal control

to the ultrasound imaging, the ultrasound harmonic imaging and to the constrast

harmonic imaging with or without encoding.

The simplicity of the method has allowed us to adapt it to harmonic imaging by a

change in the cost function. This adaptation shows that our method can usually be

applied to the ultrasound imaging.

Nowadays, the stakes of the ultrasound imaging focus not only on the excitation

processings or image processings but also on the sensors. This point naturally leads

us to seek the optimal control of the capacitive transducers (cMUT) in order to adapt

them to the encoded ultrasound imaging. Our compensation and encoding methods

by optimal control provide very promising results that go beyond our expectations.

The application scope of our methods of optimal control is large and we do not see

all the limits yet. The main advantage of our approaches is the easiness of their use

and of their implementation. Indeed, our approaches do not require any a priori

knowledge on system and medium explored. Our system automatically adapts itself

to the changes which may be related to sensor ageing or to the medium change.

Keywords: Adaptive system, closed-loop, optimal control, optimization, ultra-

sound imaging.
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Introduction

S
ince the presentation of the first ultrasound scanner by J. J. Wild and

J. Reid in 1951 [Wild and Neal, 1951], the ultrasound imaging systems

have steadily increased to provide physicians with better quality images

[Wild and Neal, 1951]. Ultrasonography has become one of the major imaging

modalities for its help in the early diagnoses and in the monitoring of diseases.

Transmission
Tx

Medium
Reception

Rx
Image

Post-processing

Excitation

Figure 1 – Block diagram of an unoptimized ultrasound imaging system.

Each sub-process system has undergone major improvements whether at the

level of sensors, electronics, signal processing or beamforming. The systems are thus

more sensitive. But the general principle of ultrasound imaging system [Szabo, 2004]

remains the same (Fig. 1):

1. a signal with a given form excites the ultrasound probe;

2. the ultrasound probe composed of many transducer elements converts the

electrical signal into an ultrasound wave. Each signal associated with an

element of the ultrasound probe is more or less delayed, depending on the

chosen beamforming [Lingvall, 2004], so that the wave focuses on a spot in the

medium to be imaged;

3. the ultrasound wave propagates into tissues;
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4. the echoes are collected by the probe by applying the rules of beamforming.

A line of the image is reconstructed by the signal envelope. Its amplitude

gives information about the nature of the spot probed while the time given

information about the depth of the point probed;

5. the first four operations are repeated with a focus on a close point. The image

is performed line by line.

The main issues of the ultrasound imaging in which the research needs have

shown an interest concern three interrelated topics: the contrast, the signal to noise

ratio and the resolution. The majority of image enhancements have focused either

on beamforming [Misaridis, 2001, Synnevag et al., 2007] or on the post-processing

of the received signals [Szabo, 2004, Idier, 2008]. In all the cases, the received signal

depends on the transducers in transmission and in reception of the transmitted

acoustic wave.

From our point of view, open loop imaging systems can provide the optimum op-

erating conditions only if the commmand of the system is properly pre-set. However,

such knowledge is difficult to accurately identify, knowing that from one patient to

another, the physical characteristics of tissues differ slightly. Moreover, the non-

linearities of the system and of the medium explored make it difficult to explore

analytical problem solving.

The difficulty is thus to find a method which optimizes the desired criterion

by an optimal setting of the system command and without a priori knowledge of

this system. To automatically find the optimal settings for the system, we propose

to use the information of the output signal, i.e. the signals constituting the final

ultrasound image. The open loop imaging system is transformed into a closed loop

imaging system, but whose properties are preserved (bandwidth, physical properties,

etc.).

To validate this concept of optimal command in ultrasound imaging, the manu-

script is divided into three parts. The first part is devoted to an introduction of the

general issue of optimal command in ultrasound imaging. In the second part, from

chapters 2 to 4, our concept is applied to the native and contrast harmonic ultrasound

imaging. The simulation models will be presented first, then the experiments and

finally the approaches that seemed suitable for real-time imaging. We will present in
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chapter 3 parametric suboptimal methods using known families of signals. Instead,

in chapter 4, we will present non-parametric sub-optimal methods maximizing a

waveform, although we will modify the parameters of a filter. Finally, in the last part

of this thesis, we will present our vision of the optimal command in coded imaging

using cMUTs. Finally, we will conclude and we will suggest several perspectives to

this research work.
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Chapter 1

Introductions to Optimized

Ultrasound Imaging Systems

S
ince the advent of the first ultrasound imaging systems, their improvement

has mainly focused on post-processings of the received signal. However,

these methods can not be fully effective in the presence of poor quality

signal. The improvement of ultrasound images therefore require a suitable choice of

command systems.

In this chapter, we will briefly explain the operation of a ultrasound imaging

system optimized by a closed-loop. Then we will draw up a state of the art of

existing optimal commands. Finally, we will introduce the concept of parametric

optimization.

1.1 Feedback and Closed Loop

Transmission
Tx

Medium
Reception

Rx
Image

Post-processing

Optimization

Figure 1.1 – Block diagram of an ultrasound imaging system optimized by feedback.
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The optimization by closed loop consists in seeking the best tunings for a system

which maximizes a cost function J . In our case, the parameters of the excitation (or

command) are sought to maximize a criterion at the output of the system studied.

Such a system is optimized by using a feedback from the output to the input (Fig.

1.1).

1.2 Acoustic Optimization

Since the 1990s, a few closed-loop methods have been proposed to optimize the

signal-to-noise ratio (SNR) and the resolution. They are based on invariance prop-

erties such as the time reversal method [Fink, 1992].

1.2.1 Time Reversal

Time reversal is a method of adaptive beamforming through an aberrator medium

using the physical properties of the medium. The goal is twofold. On the one hand,

the resolution can be increased by reducing the size of the focusing spot. On the

other hand, the signal-to-noise ratio can be maximized at the focusing spot while

the energy around the focal spot is minimized. The echo from the scatterers at the

focusing spot is more important than the echoes from other scatterers.

If the system performs linearly, it is possible to use the formalism of convolution

such as:

y(t) = h(t) ∗ x(t), (1.1)

where ∗ is the convolution operator, t the time, h(t) the impulse response of the

system and x(t) the system input. Maximizing the output y(t) of the system is

equivalent to performing an autocorrelation by settling the command, or if it is a

post-processing, to adjusting the filter impulse response by settling x(t) = h(−t).

To achieve this correlation, the time reversal method (Fig. 1.2) suggests to send

a wave and to receive its echo (switch in position 1) in a first step. In a second step,

the echo is reversed temporarily and sent to the medium (switch in position 2). The

wave exactly follows the reverse path and focuses at the spot of echo emission. The
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Medium

x

y(t)y(-t)

Transmission
Tx

Reception
Rx

- t

Image
1

2

Figure 1.2 – Block diagram of the imaging time reversal.

signal yopt at the output system after optimization becomes:

yopt(t) = h(t) ∗ y(−t) = h(t) ∗ h(−t) ∗ x(−t). (1.2)

This principle has been generalized in the case of the use of a multi-element

ultrasound probe [Prada and Fink, 1994] :

yj(t) =

Nel
∑

i=1

hji(t) ∗ xi(t), (1.3)

where yj is the backscattering for the element j of the ultrasound probe with Nel

elements used for the wave focusing.

However to find the optimal command when the system is non-linear, the non-

linearity of the system should be taken into account. If we want to draw a par-

allel between our approaches and time reversal, we should propose a formalism

which takes into account the non-linearities for example by using the Volterra

series [Lacoume et al., 1997] :

yj(t) =

Nel
∑

i=1

(

∑

k1

hj1(k1) · x(t− k1) +
∑

k1,k2

hj2(k1, k2) · x(t− k1) · x(t− k2)

+ · · ·+

+
∑

k1,...,kK

hjK(k1, . . . , kK) · x(t− k1) . . . x(t− kK)

)

,

(1.4)

where K is the order of the decomposition. Note that the first term of the decompo-

sition corresponds to the convolution. When the decomposition is at the first order,
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the equation 1.4 describes the time reversal defined by the equation 1.2.

Finding the optimal command of a nonlinear system is probably possible. In the

case of a line of ultrasound image, the optimization problem of the output y(t) can

be written with the following equation:

argmax
x(t)

(y(t)) = argmax
x(t)

(

h1(t) ∗ x(t) + h2(t1, t2) ∗
2
x(t) + · · ·

)

(1.5)

where ∗
N

is the symbol of N -dimensional convolution.

A first sub-optimal approach could be to maximize each one of the terms of the

decomposition such as:

max
x(t)

(y(t)) ⇔ max
x(t)

(

h1(t) ∗ x(t)
)

+max
x(t)

(

h2(t1, t2) ∗
2
x(t)

)

+ · · · (1.6)

This optimization amounts therefore to finding the command x(t) which would sat-

isfy the maximization of each term. But this problem is not easy, since the problem

involves a cost function with many simultaneous cost-functions, and therefore “single

objective” optimization should become a “multi-objective” optimization.

In this work, the maximization problem is rather solved by using a decomposition

with a nonlinear autoregressive model. To complete the list of the existing techniques

in optimal command, we have to mention the technique of the maximization of the

topological energy.

1.2.2 Topological Energy in Time Domain

The topological energy in time domain is an imaging method from the topological

energy optimization with the constraint of the wave equation. From our point of

view, this problem is conceptually closer to our approach than the time reversal

imaging, for which the cost-function to be maximized with a constraint (the dif-

ferential equations of propagation and of ultrasound contrast agent oscillations) is

made mathematically explicit.

Here, the inverse problem aims at finding the topological properties of the medium

observed. Created for the non-destructive testing [Dominguez et al., 2005], it is

also applied to biological tissues [Sahuguet et al., 2010]. However, in this case, the

process requires a quantification of the acoustic impedance distribution.
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Figure 1.3 – Block diagram of the topological energy in time domain.

This method, described in Fig. 1.3, evaluates the correlation between the re-

sponses of a virtual medium Ω and of an unknown medium being explored Ωm.

The topological optimization thus consists in minimizing the difference between the

ultrasound response ym of Ωm and the ultrasound response y of Ω such as:

J(Ω) =
1

2

∫ Tobs

0

(
∫

Γm

|y − ym|
2d−→r

)

dt, (1.7)

where Tobs is the observation duration. In practice, to initialize the optimization,

the physical properties of the medium Ω are chosen homogeneous and as close as

possible to the medium Ωm. Starting from the reference medium Ω in which some

infinitesimal “holes”a are virtually and gradually inserted, the iterative optimization

can deduce the medium topology.

To calculate the topological energy, it is necessary to solve two problems: the

forward problem and the adjoint problem.

The forward problem consists in simulating the ultrasound field y generated by

the propagation of the ultrasound wave in the medium Ω. The sensitivity of the

variation dΩ of the medium Ω is determined from the asymptotic expansion of first

order:

J(Ω+ dΩ) = J(Ω) + f(dΩ)g(−→r ) + o(f(dΩ)), (1.8)

where ∀ dΩ, the boundary conditions are f(dΩ) > 0, lim
dΩ→0

f(dΩ) = 0 and the

function g(−→r ) is the topological gradient.

The adjoint problem is the second digital problem of the ultrasound propagation

aArea whose properties have a high contrast in comparison with those of the surrounding
medium.

47



PROOFREADIN
G

CHAPTER 1. INTRODUCTIONS TO OPTIMIZED ULTRASOUND
IMAGING SYSTEMS

of the time reversed difference v between the response y of the medium Ω and the

response ym of the medium Ωm.

The topological gradient can be written from y and v such as:

g(−→r ) =

∫ Tobs

0

y(−→r , t) · v(−→r , t)dt, (1.9)

where −→r ∈ Ω. The positions in which the topological gradient is negative corre-

sponds to the positions where infinitesimal holes have to be inserted. The topology

thus tends toward the medium to be explored.

Finally, to see the result, it is possible to calculate the topological energy ET

such as:

ET(−→r ) =
∫ Tobs

0

||y(−→r , t)||2 · ||v(−→r , t)||2dt. (1.10)

1.3 Optimal Command for imaging system

The optimal command [Åström and Wittenmark, 1994] has been created in 1960s

in the aeronautics field. The aim was to determine the optimal parameters for the

autopiloting.

1.3.1 Problem of Optimal Command with Constraints

The optimal command theory is derived from the variational calculus [Kirk, 2004].

By using Lagrange multipliers, the optimal command problem with constraint can

be rewrittten without constraint. The cost-function of the optimal command with

constraint have to be minimized and it can be written:

J(x(t)) =

∫ Tobs

0

x2(t)−

∫ Tobs

0

λ(t)G(t)dt, (1.11)

where λ(t) is the Lagrange multiplier and G the differential equation which de-

scribes the dynamic system. In the case of imaging systems, the function G has to

take into account many nonlinear phenomena, such as the nonlinear propagation,

the presence of ultrasound contrast agents or the sensor nonlinearities. If we want

to take into account the largest number possible of phenomena, the problem solving
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has no analytical solution. It is thus easier to understand a parametric optimization

problem rather than a shape optimization problem [Girault, 2010].

1.3.2 Toward a Parametric Problem

We propose to apply an optimal command which optimizes the output by setting

the system command on the principle of a closed loop system. However, as, the

existing algorithms which determine the command are sample to sample, it is not

always possible to apply this solving in ultrasound imaging. Indeed, in the case

of ultrasound imaging in which we want to optimize an image quality criterion, the

latter has to be calculated before the new parameter values of the command. In these

conditions, we try to apply “signal to signal” methods rather than sample to sample

methods. This last item constitutes one of the most important foundations

of our concept, by adjusting well known techniques of adaptive filter to

the ultrasound imaging field.

To validate this concept, we tested the feasibility through a first experiment

[Ménigot et al., 2010] where the aim was to optimize the contrast between the en-

ergy Eagents from the ultrasound contrast agents and the energy Etissue from the

surrounding medium. To simplify the experiment, we first focused on the energy

backscattered by the ultrasound contrast agents such as:

max
w

(Eagents) (1.12)

where w is the parameter filter.

The principle is described by the scheme 1.4 and it consists in:

1. sending a sinusoidal wave train x(t) through the medium with PZT single

element transducer (Sofranel, Sartrouville, France) centred at 2.25 MHz and

with a bandwidth of 74%;

2. measuring the signal backscattered by ultrasound contrast agents y(t) with a

PZT single element transducer centred at 3.5 MHz and with a bandwidth of

63% (Sofranel, Sartrouville, France) ;
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Figure 1.4 – Block diagram of ultrasound imaging by matched filter.

3. identifying the signal y(t) by ŷ(t) with an autoregressive filter of order four

[Michaut, 1992]:

ŷ(t) =

4
∑

i=1

wiy(t− i). (1.13)

The parameters w of the filter are determined by the recursive least square

method (RLS);

4. normalizing the amplitude of the signal ŷ(t) so that its energy Eŷ is identical

to the energy Ex of the transmitted signal x(t). This signal is called y∗(t) ;

5. the new excitation is y∗(t) and return to step 2.

Fig. 1.5 represents the gain between the backscattered energy when the system

excitation is y∗(t) and the backscattered energy when the system excitation is x(t).

Note that the matched filter does not take into account the step 3 with ŷ = y.

The main idea of our approach is to identify the signal y(t) = h(t) ∗ x(t) of the

imaging system (transducer and medium) during a learning step (switch in position

1). Then, when the learning step is completed (switch in position 2), the signal ŷ(t)

is time-reversed and sent instead of x(t).

This technique provides the foundations of our optimal command principle,

since the main advantage is that no a priori information is required to find an
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Figure 1.5 – Experiment with an initial sinusoidal signal and with a pressure level A0 of 137 kPa.

optimal command of the system. However, in this case, the assumption of the

contrast optimization by only maximizing the energy backscattered by ultrasound

contrast agents is a too restrictive assumption, since it does not take into account

the minimization of energy backscattered by the surrounding tissue. Conversely,

the suppression of tissue harmonic contribution [Couture et al., 2008] increases the

contrast, but certainly without reaching the contrast global maximum. Moreover,

knowing that the matched filter does not let the free choice of the cost-function, we

have to imagine other ways to optimize our cost-function, which we suggest in the

next part.
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1.4 Conclusion

Up to now in the ultrasound imaging field, researches in optimal command for

ultrasound imaging are limited or even nonexistent. Only some studies are references

[Fink, 1992, Reddy and Szeri, 2002, Dominguez et al., 2005, Mleczko et al., 2007].

Time reversal, although widely used, is not really one of the optimal command

techniques, since no explicit cost-function is optimized. Our research work on

optimal command clearly and show the different kinds of cost-function to optimize.

They are distinct from existing works, since they are mainly based on optimal

adaptive filtering. For now, we think sensing just a part of the high potential of

such methods. Besides, the preliminary results shown previously partly confirm this

potential. We therefore propose to continue in this way taking as a line of sight the

applicability of this method for ultrasound imaging, especially the medical field.
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Ultrasound Harmonic Imaging and

Simulation Models

O
ver the past twenty years, improvements in the sensitivity of medical

ultrasound imaging systems have provided more accurate medical diag-

noses through intravenous injection of ultrasound contrast agents con-

taining microbubbles. The perfusion imaging thus obtained, in the myocardium

or in tumors for example, has provided physiological and pathological informa-

tion [Frinking et al., 2000]. Initially, only the linear interactions between the micro-

bubbles and the ultrasound waves were operated in B-mode to increase the sensitivity

between the tissue and the microbubbles. However, the use of ultrasound contrast

imaging was revolutionized in clinical practice when the nonlinear interaction be-

tween microbubbles and ultrasound wave was taken into account. The nonlinearity

of the contrast agent response has become one of the major focus of research to

obtain the best contrast. Indeed, soft tissue are known to be essentially linear

scatterers [Borsboom et al., 2009], while the microbubbles have a high nonlinear

behaviour during the ultrasound interaction. Unfortunately, obtaining an ideal

method has been limited by two factors. First, good separation of the harmonic

components requires a limited pulse bandwidth [Averkiou, 2000], which reduces

the axial resolution, like in second harmonic imaging [Burns, 2002]. Secondly, the

effects of the ultrasound wave propagation limit the CTR because of the presence

of nonlinear components generated in tissue [Frinking et al., 2000].

Several imaging methods have been proposed to improve contrast and/or reso-

lution. Some of the best-known techniques are methods with discrete or continuous

encoding of the amplitude, of the phase or of the frequency of the transmitted
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ultrasound wave. While the non-encoded techniques use post-processing such as

filtering, the others use a combination of excitations to extract the nonlinearities.

In this chapter, we will explain the ultrasound contrast harmonic imaging device

that we have, as well as implemented imaging methos. An ultrasound scanner

driven by a personal computer makes an image of a phantom mimicking tissue in

which ultrasound contrast agents flow. We will first explain our simulation model

mimicking our experimental device. Then we will introduce this experimental device.

Finally, we will detail different imaging methods.

2.1 Imaging Device

The implemented imaging device follows the principle described in Scheme 2.1.

A digital signal computed is transmitted to an ultrasound system which has pro-

grammable analogue transmitters. The ultrasound probe converts this signal to an

ultrasonic wave. It propagates in a medium in which contrast agents can circulates

in a pipe. The signal is then collected by the same probe and eventually applied it

some post-processing.

Pump

Solution
of

microbubbles

Phantom

Ultrasound Scanner PCUltrasound
Probe

USB

Figure 2.1 – Scheme of the experimental setup
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2.1.1 Simulation model

The simulation model follows the same process as the experimental device (Fig.

2.2). We have joined several several existing models (propagation and microbubble)

to provide a full model that is able to simulate the process of contrast imaging.

Figure 2.2 – Block diagram of the principle of the simulation model.

2.1.1.1 Excitation

A signal is calculated numerically by using R© (Mathworks, Natick, Massachusetts,

USA). This signal is transmitted to the medium to be explored. However, in order

to get as close as possible to a real imaging system, it is necessary to add a step of

beamforming with a linear sweeping [Szabo, 2004]. Each line of an image is made

from eight elements (Nel) of the probe so that the wave focuses to 15 mm and with

an angle of zero degrees. The signal is duplicated eight times with different delays.

The signals is thus transmitted to the ultrasound probe centred at 3,5 5 MHz

with a bandwidth of 63% to −3. Note that the central frequency fc of the probe

is deliberately chosen lower than the experimental device in order to limit the

computation time.

2.1.1.2 Nonlinear Wave Propagation and Medium Explored

The wave then propagates nonlinearly in a medium whose properties have been

adjusted to mimic the liver. This medium is defined by two grids (Fig. 2.3): one for

the speed c of the wave and the other for the density ρ of the medium. The grid has

the properties of liver density ρ1 and where the speed of the wave is denoted c1. In
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addition, an 10 mm-diameter artery is at a depth of 15 mm and in which the density

ρ2 is the blood, and when the speed of the wave is denoted c2. Each grid point has

physical properties chosen randomly according to the Gaussian laws presented in

table 2.1. However, the coefficient of nonlinearity B/A is constant throughout the

grid with the value 6,7.

Liver
ρ1 N (1050 kg/m3, 30 kg2/m6)
c1 N (1578 m/s, 30 : m2/s2)

Blood
ρ2 N (1060 kg/m3, 2.5 kg2/m6)
c2 N (1584 : m/s, 2.5 : m2/s2)

Table 2.1 – Mechanical properties of the medium to be explored [Szabo, 2004].

The wave propagation in the medium (eq. 2.1 and 2.2) is solved by a model

developed by Anderson [Anderson, 2000].

ρ
δ2u

δt2
= −∇p, (2.1)

p = −K

(

∇ · u+
1

2

B

A
(∇ · u)2

)

(2.2)

où K = ρc2.

The solver uses a pseudo-spectral method to compute the spatial derivatives

of the pressure and of the speed of wave. Moreover, the equation of the propa-

gation 2.1 is solved by using the Adams-Bashforth’s method at the fourth or-

der [Ghrist et al., 2001]. The values of the pressure and of the speed of wave are up-

dated at each half time step for each point in the space. However the derivative com-

putation in the Fourier domain can cause Gibbs phenomena [Wojcik et al., 1997].

They are greatly eliminated by applying a perfectly-matched boundary layer ). Its

effect is to simulate an infinite space.

To introduce the ultrasound contrast agents in the area simulating blood, two

passes of propagation computation are required. The first identifies the incident

wave for each microbubble. Ten microbubbles are randomly distributed according a

Gaussian law near to the focal spot and in the area with the blood properties. Note

that for each simulation of a line of the image, ten microbubbles are always placed

in the medium in order to enable a Rayleigh diffusion. The second pass, after the
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Figure 2.3 – Representation of the grid of speed c of wave speed and of the grid of the density ρ that define the
medium to be explored. The ultrasound probe is located at the depth 0 at the top of the representation.

solving of the oscillation of each microbubble, injects the microbubble wave. The

signals are recorded in the second pass at the sensor position.

2.1.1.3 Microbubbles

The ultrasound contrast agents simulated are microbubbles encapsulated of SonoVueTM

(Bracco Research SpA, Geneva, Switzerland). A phospholipid monolayer imprisons

gas of Sulfur hexafluoride (SF6) [Greis, 2004] whose polytropic exponent κ is 1,095.

The microbubbles used had the following properties:

• their diameters are randomly selected according to the distribution shown in

Fig. 2.4 with an average diameter 2,5 µm [Greis, 2004];

• their average frequency of resonance is 2,6 MHz [van der Meer et al., 2004].

The acoustic response of the contrast agents is computed for a single microbubble

by the Marmottant’s model [Marmottant et al., 2005] based on the Rayleigh-

Plesset [Plesset, 1949] equation modified and polytropic transformation. Radial
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Figure 2.4 – Histogram of the size distribution of microbubbles.

oscillations are not considered because of the assumption of spherical symmetry.

The model advantage is to be validated with optical observations of the oscillation

of microbubbles SonovueTM. In addition, it takes into account the phenomena of

shell buckling and of shell rupture. To do so, the surface tension varies according

three states depending on the microbubble surface (Fig. 2.5):

• Buckled state: below a threshold Sbuckling of the microbubble surface, the

microbubble can remain spherical and deforms. The surface tension σ tends

to zero;

• Ruptured state: conversely, during the microbubble expansion, the available

surface per molecule increases and the surface tension of σ;

• Elastic state: between these two extreme cases, in the linear regime, the surface

tension is described by using the elastic modulus of the shell and the surface

of the microbubble [Pauzin, 2009].
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Figure 2.5 – Modelisation of the effective surface tension of a monolayer of phospholipid of a microbubble.

The surface tension describing these three states is described by the equation2.3:

σ(R) =























0 if R 6 Rbuckling

χ

(

R2

R2
buckling − 1

)

if Rbuckling 6 R 6 Rrupture

σblood if R > Rbuckling

, (2.3)

where χ = 0,38 N/m, σblood = 0,058 N/m, Rbuckling = R0 and Rrupture = 2R0.

The dynamic model of the bubble is described by the following equation:

ρ2

(

RR̈ +
3

2
Ṙ2

)

=

[

p0 +
2σ(R0)

R0

](

R

R0

)−3κ(

1−
3κ

c2
Ṙ

)

−
2σ(R)

R
−

4η2Ṙ

R
−

4κSṘ

R2
− p∞(t),

(2.4)
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where the derivatives are denoted with the Newton notation, κs = 2dsηlipid =

2,4 · 10−9 N and p∞(t) the pressure sum p0 and pdriving(t).

The solving of this model is carried out by the Runge-Kutta’s method at the

fourth order for the ten microbubbles studied. From Navier-Stockes equations,

the pressure at the surface of the microbubble is deducted:

pbubble(R) = ρ2

(

RR̈ +
3

2
Ṙ2

)

. (2.5)

This pressure is transmitted to the microbubble position in the grid of the

propagation model.

2.1.2 Experimental Setup

The experimental device is described by the block diagrams 2.1 and 2.6. The

transmitted signal is first generated digitally by a computer. Then it is sent to

the system. The transmission chain of the ultrasound scanner transmits the signal

to the medium by using an ultrasonic probe. This wave propagates the medium

constituted of tissus and microbubbles. The reception chain collects the signals and

computes a line of the ultrasound image to display.

Let’s detail the various important functions of the experimental device.

Figure 2.6 – Block diagram of the experimental device.
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2.1.2.1 Ultrasound Scanner and Transducers

The excitation signal is sent to an “open” ultrasound scanner (MultiX WM, M2M,

Les Ulis, France) via USB. The scanner automatically duplicates the signal for

each element of the ultrasound probe. It automatically applies the required delays

to obtain a native beamforming of kind of [Szabo, 2004]. The signals are finally

transmitted to a linear array of 128 elements (Vermont SA, Tours, France) centred

at 4 MHz and with a bandwidth of 53% at −3 dB 3dB. The wave then focuses to

28 mm from the surface.

The transfer time of excitation for a focus is substantial since it requires about

two seconds per line (RF). In order to get closer to a time of a real examination,

we proposed to achieve our experiments only on an ultrasound image of five lines

sweeping angle 0◦25′. Thus we want to limit the destruction of microbubbles by

reducing the time of the experiment.

2.1.2.2 Medium Explored

The wave propagates through a phantom mimicking tissues (model 524, Peripheral

Vascular Flow Phantom, ATS Laboratories Inc., Bridgeport, CT, United States

of America). The phantom is penetrated by a tube 4 mm in diameter in which

circulates a solution of SonoVueTM diluted 1/2,000th.

2.2 Contrast Imaging Techniques

Several imaging methods have been developed in order to enhance the contrast.

They follow the principle described by scheme 2.7 shared by all ultrasound imaging.

Some methods require step before propagation in the medium. Others are only

post-processings. Finally, some are a combination of both.

Figure 2.7 – Block diagram of ultrasound imaging.
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The non-encoded methods are conceptually easier, since they require only a

single excitation to extract the harmonic components in post-processing. Here is a

non-exhaustive list:

• second harmonic imaging [Frinking et al., 2000];

• imaging by nonlinear autoregressive filtering [Phukpattaranont and Ebbini, 2003];

• subharmonic imaging [Forsberg et al., 2000];

• superharmonic imaging [Bouakaz et al., 2002].

Other methods are encoding techniques. They use the differences of the nonlinear

acoustic signatures between microbubbles and tissues, as for example:

• impulsion inversion [Simpson et al., 1999];

• amplitude modulation [Brock-fisher et al., 1996];

• amplitude and phase modulation [Phillips and Gardner, 2004];

• pulse subtraction [Borsboom et al., 2009];

• harmonic imaging by chirpa [Borsboom et al., 2005];

• reversal chirps [Bouakaz, 2008].

In this study, we have chosen to implement several imaging method which we

can explain; as for example: imaging by nonlinear autoregressive filtering, pulse

inversion imaging, imaging by amplitude and phase modulation, and imaging by

chirp inversion.

2.2.1 Harmonic Imaging by Nonlinear Autoregressive Filtering

Harmonic imaging by nonlinear autoregressive filtering is the most widely used non-

encoded method. We implemented harmonic imaging by nonlinear autoregressive

filter [Phukpattaranont and Ebbini, 2003] because it has better results compared to

a simple frequency filtering. The principle of harmonic imaging which consists in a

aor harmonic imaging by frequency modulation
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Figure 2.8 – Block diagram of the harmonic imaging by nonlinear autoregressive filtering.

post-processing extraction is the same whatever the method (Fig. 2.8), except for

the extraction method itself.

In the case of harmonic imaging, the incident wave propagates at the frequency

f0. The image is reconstructed from signals which are within the bandwidth around

the frequency 2f0. The difficulty in these methods lies in the fact that the frequency

component to 2f0 must come only harmonic components and not from the direct

transmission. This is achieved by transmitting signals narrow frequency band (Fig.

2.9) but obviously at the expense of axial resolution of the imaging system.

Figure 2.9 – Bandwidth transducer showing the overlap between the transmission bandwidth and the receiver
bandwidth for harmonic imaging.

Moreover, the ultrasound propagation is gone along with the generation of har-

monic frequency components for sufficiently high acoustic pressures. These nonlinear

components are linearly reflected by microbubbles and tissues. They contaminate

or hide the nonlinear component at 2f0 generated by microbubbles. Thus, all the
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contrast imaging methods based on the nonlinearity of microbubbles are damaged

because of the residual harmonic component from the tissues. Therefore, the trans-

mitted acoustic amplitude should be reduced to minimize this influence. Although

the nonlinear propagation process is undesirable in ultrasound contrast imaging,

it was found that tissue imaging harmonic mode is very interesting. Harmonic

imaging of tissue, called native harmonic imaging, greatly improves the image quality

compared to fundamental imaging method.

Quadratic component extraction of backscattered signal y(t) is performed by

using a nonlinear autoregressive filter of second order and with a memory M = 2b.

The first step is to describe a synthetic model ŷ(t) of the backscattered signal y(t)

from its past samples:

ŷ(t)=zL(t) + zQ(t)

=
M−1
∑

i=1

hL(i)y(t− i) +
M−1
∑

j=1

M−1
∑

k=j

hQ(j, k)y(t− j)y(t− k),
(2.6)

where hL and hQ are linear and quadratic coefficients respectively, zL et zQ the signals

describing the linear and quadratic components, respectively. For convenience, let’s

write the filter in matrix form::

ŷ(t) = ψT (t)h(t), (2.7)

with

ψT
n = [y(t−1), y(t−2), . . . , y(t−M+1), y2(t−1), y(t−1)y(t−2), . . . , y2(t−M+1)],

h = [hL(1), hL(2), . . . , hL(M − 1), hQ(1, 1), hQ(1, 2), . . . , hQ(M − 1,M − 1)]T .

The optimal parameter vector h can be written simply by using a matrix inver-

sion [Golub and van Loan, 1989] such as:

hopt = Θ−1
Gy, (2.8)

with

Gy = [y(t), y(t+ 1), . . . , y(t+N − 1)]T ,

bThis memory is selected to provide a quick data processing and experimental application.
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Θ = [ψ(t), ψ(t+ 1), . . . , ψ(t+N − 1)]T ,

where N is the number of parameters equals to
K
∑

i=1

(M + i− 1)!

(M − 1)!i!
with K the filter

order and M the filter memory. Note that to increase the robustness of the inversion

matrix, a singular value decomposition may be performed. However in cases where

the matrix is not invertible, it is necessary to provide a step of regularization.

The identification of the filter coefficients h can also be achieved by least squares,

i.e. the minimization of the mean square error MSE between the output y(t) and

its estimated ŷ(t) such as:

hopt = min
h

MSE = min
h

E
[

(y(t)− ŷ(t))2
]

. (2.9)

The optimal parameter vector is then written as follow:

hopt =
(

ΘΘT
)−1

ΘGy. (2.10)

Finally, in the case of harmonic imaging by nonlinear autoregressive filtering,

the signal used to reconstruct the image is the signal zQ reconstructed from the

coefficients of quadratic components. Note that the signal zQ describes more non-

linearities that the signal zL since zQ is reconstructed from x2(t) which does not

contain the fundamental component.

2.2.2 Pulse Inversion Imaging

Figure 2.10 – Block diagram of pulse inversion imaging.

Pulse inversion imaging inversion pulse [Simpson et al., 1999] (or phase inver-

sion) is one of the most used to increase the contrast while maintaining good spatial

resolution methods. Its principle is described in Fig. 2.10. This technique is based
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on the asymmetry of the microbubbles of the oscillations between the compression

phase and expansion phase.

A sequence of two successive excitations x1(t) and x2(t) is transmitted. The

second wave x2(t), transmitted after an appropriate delay, is a replica but in opposite

phase in comparison with the first wave x1(t). When the medium behaves linearly,

the sum of the two echoes is zero, which is no longer true if the nonlinearities of the

medium components are composed of even components (Fig. 2.11).

+

Transmission
Reception

with linear scatterer

+

Reception
with nonlinear scatterer

Figure 2.11 – Principle of pulse inversion imaging.

The method thus detects even harmonic components. To demonstrate it, consider

a nonlinear system whose output y(t) can be written as a decomposition of power

series from the input signal x(t) such that:

y(t) = echoe (x(t)) =
+∞
∑

p=1

wpx
p(t) = w1x(t) + w2x

2(t) + w3x
3(t) + . . . , (2.11)

where wp are coefficients amplitudes. Now calculate the sum of echoes for excitations

in opposite phases:

S(t) = echoe (x(t)) + echoe(−x(t)) =
+∞
∑

p=1

wpx
p(t) +

+∞
∑

p=1

wp (−x(t))
p

S(t) = w1x(t) + w2x
2(t) + w3x

3(t) + · · · − w1x(t) + w2x
2(t)− w3x

3(t) + . . .

= 2w2x
2(t) + 2w4x

4(t) + . . .

(2.12)
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Following the same principle, the echoe difference D(t) for excitations in opposite

phases can extract only the odd harmonics. Moreover, to demonstrate that the

pulse inversion only preserves nonlinearities generated by the system, it is possible

to assume: the signal x(t) containing several harmonics can be decomposed into

several components, e.g. , eg x(t) = a1x1(t) + a2x21(t). In this case, the sum only

contains some terms from a nonlinear transformation of the system (eq. 2.13). The

quadratic components of x(t) undergone a linear transformation are eliminated.

S(t) = 2w1x
2(t) + 2w4x

4(t) + . . .

= 2w2

[

a1x1(t) + a2x
2
1(t)
]2

+ . . .

= 2w2a1x
2
1(t) + 4w2a1a2x

3
1(t) + 2w2a2x

4
1(t) + . . .

(2.13)

The pulse inversion imaging therefore makes possible to increase the detection

of microbubbles echoes while minimizing the echoes from the other structures such

as tissue. It has the advantage of working on the full band of the transducer, which

does not deteriorate the resolution. But the price is reduced the framerate, which

makes the method sensitive to movement.

2.2.3 Imaging by Phase and Amplitude Modulation

Imaging by phase and amplitude modulation [Phillips and Gardner, 2004], known as

“Contrast Pulse Sequence”, is a method which combines the pulse inversion (shown

above) and amplitude modulation [Brock-fisher et al., 1996]. It uses a sequence of

excitations by varying both amplitude and phase (Fig. 2.12).

Figure 2.12 – Block diagram of the imaging by phase and amplitude modulation.

Several possible sequences exist. The simplest consists of two excitations x1(t)

and x2(t). The second wave x2(t), transmitted after a suitable time, is a replica
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of x1(t) in opposite phase and whose amplitude is double. In this example, the

echo of the first excitation x1(t) is multiplied by two and added to the echo of the

second excitation x2(t). When the medium behaves linearly, this sum is zero, which

is not often the case when the reflector is nonlinear as microbubbles. The phase and

amplitude modulation only eliminates the fundamental frequency in contrast with

the inversion pulse where even or odd components are only kept. To demonstrate

this, let us take our hypothesis described by the equation 2.11. Thus the sum of two

echoes eliminates the contribution to the fundamental frequency:

S(t) = 2echo (x(t)) + echo (−2x(t)) = 2
+∞
∑

p=1

wpx
p(t) +

+∞
∑

p=1

wp (−2x(t))p

= 2w1x(t) + 2w2x
2(t) + 2w3x

3(t) + · · · − 2w1x(t) + 4w2x
2(t)− 8w3x

3(t) + . . .

= 6w2x
2(t)− 6w3x

3(t) + . . .

(2.14)

The method has the advantage of being insensitive to small movements, and

especially as the number of pulses in the sequence is high, but at the expense of

frame rate [Tranquart et al., 2007a].

2.2.4 Imaging by Frequency Modulation

The last recently years have seen the emergence of imaging methods involving excita-

tions with frequency modulation also called chirp. These imaging methods have the

advantage of significantly reducing the pressure level, since the energy is distributed

in time. It also makes possible to increase the lifespan of contrast agents. However,

to maintain an axial resolution, it is necessary to add a so-called “compression ”

step on the reception signal developed for radar systems [Klauder et al., 1960] and

suitable for ultrasound imaging [Rao, 1994, Misaridis and Jensen, 2005].

Three methods of imaging using frequency modulation have been developed:

• harmonic imaging by chirp [Borsboom et al., 2003];

• imaging by chirp inversion [Chiao and Hao, 2005];

• imaging by chirp reversal [Bouakaz, 2008].
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The first, harmonic imaging by chirp is the simplest. The excitation of micro-

bubbles is a sinusoid frequency-modulated by a law such as f(t) = f0+β1t. Finally,

the echo is compressed by a matched filter around 2f0. This step consists in applying

a filter whose impulse response is also sinusoidal frequency-modulated but with a

law f(t) = 2f0 − 2β1t. At low levels of pressure, the frequency modulation can

significantly increase the nonlinearities in comparison to a excitation with the same

bandwidth but without modulation.

The second method, imaging by chirp inversion, combines the frequency modu-

lation and pulse inversion imaging. It has already been applied to tissue imaging,

but not in contrast imaging. The principle is identical to the inversion pulse. The

first wave x1 is frequency modulated and transmitted to the medium. Then a second

wave x2 is modulated with the same law, but in opposite phase in comparison to x1.

Each of the respective echoes y1 and y2 is compressed with a matched filter for each

y1,c and y2,c. The image is made from the sum of compressed signals y1,c et y2,c.

The third, imaging by chirp reversal, also uses coded excitations. A first excita-

tion x1(t) is modulated with a law such as f(t) = f0+β1t. A second excitation x2(t)

is modulated but with an opposite slope such that f(t) = f0 − β1t and transmitted

after an appropriate delay. Each of the signals is compressed with the matched filter

that suits its for y1,c and y2,c respectively for the first and second echoes. The image

is made from the difference between the signals y1,c and y2,c.
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Chapter 3

Optimal Command by Signal

Families

U
ltrasound harmonic contrast imaging has a large number of methods to

enhance contrast. However, these techniques have difficulties to ensure

both good spatial resolution and good contrast. According to the medical

application, this compromise may have the advantage of contrast or of resolution.

For example, in contrast echocardiography, contrast is preferred even if resolution

decreases [Burns, 2002].

Anyway, the setting parameters of the system are crucial, because they require a

priori knowledge of the medium, of the system and of the transducer. Indeed, there

are many unknowns such as:

• the pressure level is not accessible in the tissues, since the effects of diffraction

and of attenuation can vary from one patient to another;

• the level and number of nonlinear components created during tissue prop-

agation are unknown according to depth, as they can vary with depth of

exploration.

Moreover, most techniques do not allow the clinical examination to adjust itself to

changes in:

• the microbubble concentration which evolves during the examination and which

remains inaccessible, hence unknown [Becher and Burns, 2000];

• the distribution of the microbubble sizes which is not known with precision

and which changes during the examination [Soetanto and Chan, 2000].
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In order to solve this problem, new innovative imaging methods must guarantee

a optimal contrast automatically throughout the examination duration. In this

chapter, we propose to take up this challenge.

In this chapter, we propose an imaging system which optimizes the CTR (Contrast-

to-Tissue Ratio) and which can select the system parameter w automatically among

a solution family::

max
w

(CTR) , (3.1)

The CTR is defined as the ratio between the backscattered power of the medium

perfused by the microbubbles and the backscattered power of the non-perfused

medium [Phukpattaranont and Ebbini, 2003] such as:

CTRk =

1
Nl·t1

Nl
∑

l=1

t1
∑

t=t0

zk,l(t)
2

1
Nl·t3

Nl
∑

l=1

t3
∑

t=t2

zk,l(t)
2

, (3.2)

where Nl is the line number of the image, zk,l(t) the l-line of the image after post-

processing (including imaging techniques) at the optimization iteration k. The two

areas are delimited by the limits [t0, t1] axially for the medium perfused by the

microbubbles, and the limits [t2, t3] for the non-perfused medium.

We hypothesize that it exists a suitable choice of the excitation parameters

(frequency, amplitude, phase, duration, energy, etc.) which can optimize the contrast

without prior knowledge of the medium, the transducer and the parameters Of

excitation [Ménigot et al., 2009]. Moreover, we also assume that the region perfused

by the microbubbles is already identified. We detected the zones manually. But this

detection could, for example, be automated by a segmentation method adapted to

ultrasound imaging [Tauber, 2005]. Finally, the method must be independent of the

simulation model or the experiments performed, in absolute terms.

3.1 Methods

Our method follows the principle described by the diagram 3.1 where we have added

a feedback to loop the ultrasound imaging system. In addition, this work is in
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Figure 3.1 – Block diagram of closed-loop ultrasound imaging.

the context of ultrasound contrast imaging. This configuration has the advantage

of being able to easily identify a quality criterion of the image (for example the

contrast). Indeed, the region of interest containing the microbubbles is easily iden-

tifiable. However, this principle remains true apart from the context of ultrasound

contrast imaging.

We restricted our choice to two signal families. These choices seem to be the

most relevant given the results presented in the literature. The first family consists

of truncated half-sinusoids and the second is a family of sinusoids modulated in

frequency.

3.2 Optimal Command by Family of Truncated Half-

Sine Waves

The starting point of our study has its origin in the work of the analytical optimiza-

tion of contrast in pulse inversion of impulses [Reddy and Szeri, 2002]. This solution

being analytical, we have apprehended this solution from a suboptimal point of view.

To approximate the analytical waveform (Fig. 3.2), we propose to cut a period of

the wave into two truncated half-sine waves with respective amplitudes A1 and A2

and with respective durations T1 and T2.

The system command is computed numerically and iteratively. The parameters

which describe the truncated half-sine waves are determined at each iteration k.

The signal consists of several cycles of a sub-optimal wave (for example, the curve in

green dotted line in Fig. 3.2) and is modulated by a [Tranquart et al., 2007b] such

as:

x′k,ϕ(t) = exp

[

−

(

2(f1,k + f2,k)t

Nc

)2
]

ξk,ϕ(t), (3.3)
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Figure 3.2 – Optimal solution computed analytically [Reddy and Szeri, 2002] and sample suboptimal solution defined
for our family of truncated half-sine waves.

where k is the optimization iteration, t the time and f1,k = 1/T1,k, respectively

f2,k = 1/T1,k, are the frequencies of the truncated first half-sine wave, respectively

of the truncated second sine wave, at the k iteration. The number of cycles of the

excitation Nc is chosen as a function of the imaging method. Thus, for a non-coded

method such as harmonic imaging by nonlinear autoregressive filtering, because of

the need for a restricted bandwidth, the cycle number Nc is equal to four, i.e. 50%

of relative bandwidth a at the center frequency fc of the transducer. In coded

methods, the cycle number is set to 2.3, or 100 % of the bandwidth relative to the

center frequency fc of the transducer.

The signal ξk(t) represents the signal composed of the two truncated half-sine

waves not modulated by the Gaussian and defined by equation 3.4:

ξk,ϕ(t) = ξ1,k,ϕ(t)− ξ2,k,ϕ(t), (3.4)

aThe relative bandwidth is defined as the percentage of the signal bandwidth in the transducer
bandwidth
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where ξ1,k,ϕ(t), respectively ξ2,k,ϕ(t) are the two truncated half-sine waves described

in equations 3.5 and 3.6.



























ξ1,k,ϕ = sin

(

2πt

T1,k
+ φϕ

) +∞
∑

i=−∞

Rect T
1,k
2

[

t− i
T1,k
4

]

, (3.5)

ξ2,k,ϕ = αk sin

(

2π(t−
T1,k

2
)

T2,k
+ φϕ

)

+∞
∑

i=−∞

RectT
2,k
2

[

t− i

(

T1,k
2

+
T2,k
4

)]

, (3.6)

where αk = A1,k/A2,k, RectTl
(t− Tc) is a rectangle function centred in Tc with a

width of Tl, the phase φϕ is zero if ϕ = 1 and φϕ = 180◦ if ϕ = 2. However, for

non-coded methods, φϕ is always zero (or ϕ = 1).

Then, the pressure level A is set so that the energy of the excitation xk(t) is

constant such as:

Ak · A1,k =

√

A2
0 · Pxref

Px′

k,ϕ

, (3.7)

where A0 is the pressure level of the reference signal xref. This signal xref is computed

at the central frequency fc of the transducer. Its power Pxref
is the reference power.

The power of the transmitted wave is then constant by adjusting the amplitude of

the signal:

xk,ϕ(t) = Ak · A1,k · x
′

k,ϕ(t). (3.8)

This signal xk(t) constitutes the excitation of the imaging system to optimize the

CTR (equation 3.2).

In this section, we present our results obtained in optimal empirical and auto-

matic command for simulations and experiments. We aggregated the results by

imaging methods. We first start with harmonic imaging obtained by nonlinear

autoregressive filtering, then by pulse inversion imaging and finally by phase modu-

lation and amplitude imaging.

To show the feasibility of our approach, we begin by presenting the simplest

method to know the harmonic imaging by nonlinear autoregressive filtering. Then,

we explore the possibilities of optimization with the second imaging method. Finally,

the last imaging method allows us to demonstrate that our method can be adapted

to all imaging methods. The various optimizations are summarized in the following

table:
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Optimization
Parameters

HI-NAR PI CPS

f0 empirical
and
automatic

empirical
and
automatic

empirical
and
automatic

f1, f2 empirical
and
automatic

empirical
and
automatic

empirical
and
automatic

α with f1,opt and
f2,opt

empirical
and
automatic

empirical
and
automatic

empirical
and
automatic

f1,f2 and α automatic automatic automatic

Table 3.1 – Optimizations for the family of truncated sine waves (HI-NAR: harmonic imaging by nonlinear
autoregressive filtering, PI: pulse inversion imaging, CPS: phase modulation and amplitude imaging).

3.2.1 Harmonic Imaging by Nonlinear Autoregressive Filtering

To demonstrate the feasibility of our method, we propose to carry out a series of

simulations and an experimentation. We demonstrate, through simulations, the

optimality of our closed loop system in two steps:

1. we empirically check that the cost function (the CTR) has a global maximum;

2. we check that the system automatically looks for the parameters of the exci-

tation.

To compare with non-optimized imaging, we chose two values of excitation frequen-

cies f0 usually chosen empirically: the central frequency fc of the transducer and

two-thirds of this same frequency [Hossack et al., 2000]. Finally, we validate our

concept through experimental measurements.

3.2.1.1 Setting of the Excitation Frequency

This first optimization is the simplest case, since we hypothesize that the CTR is a

function of the excitation frequency f0 with f0 = f1 = f2 and α = 1. The expression

of the excitation signal is therefore defined by the following equation:

xk,ϕ(t) = A · exp
[

−
πf0,kt

Nc

]

sin (2πf0,kt+ φϕ) , (3.9)
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with, for this imaging method, ϕ = 1 and therefore φϕ = 0.

We begin by showing our results of simulations, then our experimental results.

The Fig. 3.3 presents the empirical and automatic optimizations of the excitation

frequency f0,k for different pressure levels A0.
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Figure 3.3 – Simulations of optimizations using the excitation frequency f0 in harmonic imaging by nonlinear
autoregressive filter for different pressure levels A0. (a) Empirical investigations of the CTR maxima as a function
of the excitation frequency f0,k . The automatic optimization path for the pressure level A0 = 400 kPa is depicted
in black. (b) Automatic search of the CTR using the excitation frequency f0,k by an algorithm using the gradient.

In a first step, a first simulation, shown in Fig. 3.3a empirically searches for the

excitation frequency that optimizes the CTRfor different pressure levels A0 (from

200 to 400 kPa) We observe the following points:

• first, the CTR have a global maximum whatever the pressure level. This

property is interesting because it facilitates an automatic search by a gradient

based algorithm;

• secondly, the frequency of this global maximum changes slightly with the

pressure level. We attribute this variation to the resonance frequency of the

microbubbles, which depends on the pressure level. However, the effects of

the transducer bandwidth limit the measurement of nonlinearities, causing a

slight variation in the optimal frequency f0,opt;

• Third, the different pressure levels A0 provide a equivalent CTR. Indeed, for a

lower pressure level, the nonlinearities of the microbubbles and the tissue are

low. When the pressure level is higher, the nonlinearities of the tissue increase
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to the detriment of the nonlinearities of the microbubbles, which does not

increase the CTR. Thus, the maximum values of CTR are between 32.2 dB

and 34.5 dB, for pressure levels A0 from 200 to 400 kPa. The corresponding

gains are about 2.35 dB over the CTR obtained at two-thirds of the central

frequency fc.

In the second step, an automatic search of this maximum is carried out by the

gradient algorithm described in appendix A.1. The results are presented in Fig.

3.3b. We have copied the CTR evaluated at each iteration k in bottom. At the

top of the Fig. 3.3b, we have plotted the evolution of the excitation frequency f0,k

during iterations k. The automatic optimization finds the maximum of CTR. The

excitation frequency f0,k converges to a stable value after six iterations, whatever

the pressure level A0. Moreover, as an illustration, Fig. 3.3a shows the twenty

iterations that confirm the convergence after the first six iterations. Similarly, the

CTR reached its maximum when the excitation frequency converged. Note that the

values of the CTR and the gain obtained automatically do not have “bias” compared

to those obtained empirically during the first simulation.
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Figure 3.4 – Synthetic images in harmonic imaging by nonlinear autoregressive filter for a pressure level of A0 = 400
kPa where the excitation frequency f0 is (a) the center frequency fc of the transducer (fc = 3.5 MHz), (b) the
two-thirds of the center frequency fc of the transducer (2/3fc = 2.33 MHz), (c) the optimal frequency (f0,opt = 2.28
MHz).

In summary, these results confirm the presence of a CTR maximum at about 34

dB that can be retrieved automatically. The strong point of our method is that no a

priori knowledge is required, except for the choice of the first three frequencies that

condition the speed of convergence. To our great surprise, the optimum obtained
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is not at the recommended empirical frequencies (the central frequency fc of the

transducer and two-thirds of this frequency).

As an illustration,Fig. 3.4 shows synthetic images for the three frequencies: the

central frequency fc of the transducer, two-thirds of the center frequency fc of the

transducer and the optimal frequency f0,opt for a pressure level A0 of 400 kPa. Note

that all the images presented have also undergone a logarithmic compression.

In the first image at the frequency fc, the tissue is highly visible, reducing the

contrast. The two latter (at frequencies 2/3fc and f0,opt) reduce the contribution of

the tissue while enhancing the signal from the microbubbles. The third image at

f0,opt slightly increases the contrast by reducing a little more the contribution of the

tissue (upper and lower parts of the image).

To confirm the good results of simulations, we present the experimental results.

The excitation is chosen with a pressure level A0 of 400 kPa at the focal length.
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Figure 3.5 – Experiment of automatic optimization using the frequency of excitation f0 in harmonic imaging by
nonlinear autoregressive filter by a gradient algorithm.

The experimental results, presented in Fig. 3.5, show the evolution of the

excitation frequency f0,k and of the CTR during the iterations. The CTR converges

to its optimal value after six iterations for an excitation frequency f0,k of 2.38 MHz.

The mean CTR after convergence is about 23 dB, i.e. an average gain of 2 dB

compared to two-thirds of the center frequency fc of the transducer.
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3.2.1.2 Setting of the Frequencies of Truncated Half-Sine Waves

Now, we propose to add an additional degree of freedom by introducing the simul-

taneous search of the frequencies f1 and f2 of the two truncated half-sine waves.

We start with an empirical search, then with an automatic search. We observe

performance on synthetic images.

Fig. 3.6 shows an empirical search of the CTR as a function of as a function of

the frequencies of the truncated half-sine waves f1,k and f2,k, for a pressure level A0

of 400 kPa. The function has many local maxima, which does not facilitate a robust

automatic search. The empirical optimum is computed for f1,opt = 2.89 MHz and

f2,opt = 2.26 MHz. This CTR maximum is greater by 5.4 dB than that obtained by

the only optimization of the frequency f0,opt.
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Figure 3.6 – Simulation of the empirical search of the CTR maximum as a function of the frequencies f1 and f2 of
the truncated half-sine waves in harmonic imaging by nonlinear autoregressive filter for a pressure level A0 = 400
kPa. The automatic searches are reported in black for the gradient algorithm and in white for the Nelder-Mead

algorithm.

Fig. 3.7 presents the automatic optimizations for different pressure levels A0 by

the gradient algorithm (appendix A.1) and the Nelder-Mead algorithm (appendix

A.2). These algorithms find the maximum identified during the empirical search.

However, it is necessary to correctly initialize the algorithms and in particular the

gradient algorithm, in order to find the global maximum. Note that we have reported

82



PROOFREADIN
G

3.2. OPTIMAL COMMAND BY FAMILY OF TRUNCATED HALF-SINE
WAVES

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.5

2

2.5

3

3.5

Iterations

 f
1 a

nd
 f    

 2   
(M

H
z)

 

 

A = 200 kPa A = 300 kPa A = 400 kPa

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

32
34
36
38
40

Iterations

C
T

R
 (

dB
)

(a)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.5

2

2.5

3

3.5

Iterations

f 1 a
nd

 f    
 2   

(M
H

z)

 

 

A = 200 kPa A = 300 kPa A = 400 kPa

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

32
34
36
38
40

Iterations

C
T

R
 (

dB
)

(b)

Figure 3.7 – Simulations of the automatic optimizations using the frequencies f1 and f2 of the truncated half-sine
waves in harmonic imaging by nonlinear autoregressive filter for different pressure levels A0 by the algorithm based
on the gradient (a) and the Nelder-Mead (b). The frequencies f1 are written in solid lines, while the frequencies
f2 are dotted.

the automatic optimizations by a black line for the gradient algorithm, and by a

white line for the Nelder-Mead algorithm in Fig. 3.6.

On the basis of these results, we compute a new suboptimal synthetic image (Fig.

3.8).
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Figure 3.8 – Synthetic image in harmonic imaging by nonlinear autoregressive filter for a pressure level of A0 = 400
kPa and with the optimal values of f1,opt and f2,opt.

Unfortunately, we were not able to experimentally test this configuration and the

subsequent ones because of the limitations of our experimental setup. Indeed, these

optimizations require several CTR measurements by iterations, which increases the

experimentation duration. Our experimental device does not allow us to realize

measurements in real time.
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Figure 3.9 – Simulations of the optimizations using the amplitude ratio α ratio in harmonic imaging by nonlinear
autoregressive filter for different pressure levels A0. (a) Empirical searches of the CTR maxima as a function of α.
The automatic optimization path for the pressure level A0 = 400 kPa is marked in black. (b) Automatic search of
CTR using α by an algorithm using the gradient.

3.2.1.3 Setting of the Amplitude Ratio Between the Truncated Half-Sine

Waves

As the other configurations, the hypothesis on which our study is based is that there

is an global maximum of the cost function, here the CTR. Our goal is to check this

hypothesis.

This configuration consists in finding the coefficient α which sets the amplitude

ratio between the truncated half-sine waves, while keeping in memory the optimal

values of the frequencies f1,opt and f2,opt of the previous optimization. So when α is

less than 1, A1 is greater than A2; and reciprocally when α is greater than 1.

We start with an empirical search of the ratio α that maximizes the CTR. Fig.

3.9 shows the empirical and automatic optimizations of the amplitude ration α for

different pressure levels A0.

On Fig. 3.9a, we observe that the CTR has a global maximum whatever the

pressure level A0 (from 200 to 400 kPa).

The automatic search for this maximum is carried out by the gradient algorithm

and is presented in Fig. 3.9b. At the bottom of Fig. 3.9b, the CTR is evaluated

on each iteration k. At the top of Fig. 3.9b, the evolution of αk is depicted during

iterations k. Automatic optimization finds the maximum of CTR. As an illustration

illustration, Fig. 3.9a shows the first twenty iterations. The gain obtained by
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optimizing the amplitude ratio varies from 1.31 dB to 0.74 dB for pressure levels A0

respectively from 200 to 400 kPa.
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Figure 3.10 – Synthetic image in harmonic imaging by nonlinear autoregressive filter for a pressure level of A0 = 400
kPa and with the optimal values of f1,opt and f2,opt, and after optimization of α.

Given the small CTR gain obtained with an optimization of the amplitudes in

comparison with an optimization without amplitudes, the synthetic image 3.10 is

very close to the image shown in Fig. 3.8.

3.2.1.4 Setting of the Frequencies and the Amplitude Ratio of the Truncated

Half-Sine Waves
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Figure 3.11 – Simulations of automatic optimizations using the frequencies f1 and f2, and the amplitude ration α in
harmonic imaging by nonlinear autoregressive filter for different pressure levels A0. The frequencies f1 are written
in solid lines, while the frequencies f2 are dotted.
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This automatic setting can also be set simultaneously. We perform this simula-

tion using the Nelder-Mead algorithm . Fig. 3.11 shows the CTR as a function

of the iterations k at the bottom and the parameters at the top in both figures. In

only about fifteen iterations, this optimization can determine the optimal parameters

that maximize the CTR.

The results show that it is still possible to maximize the CTR by simultaneously

adjusting the frequencies f1, f2 and the amplitude ratio α. Note that contrary to

the cases presented in Fig. 3.7, the frequency f1 is lower than the frequency f2.

The synthetic image associated with this maximum is shown in Fig. 3.12.
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Figure 3.12 – Synthetic image in harmonic imaging by nonlinear autoregressive filter for a pressure level of A0 = 400
kPa after optimization of f1, f2 and α.

3.2.1.5 Discussions

The settings of parameters of the truncated half-sine waves in harmonic imaging by

nonlinear autoregressive filtering is performed automatically and without taking into

account the system knowledge (tissue, microbubble or transducer). It optimizes the

CTR while ensuring optimal adjustment of the nonlinear autoregressive filter (table

3.2).

Optimization
Parameters

f0 f1, f2 α with
f1,opt and
f2,opt

f1,f2 and α

CTR (dB) 34.49 39.92 40.72 41.75

Table 3.2 – Optimal CTR of simulations in harmonic imaging by nonlinear autoregressive filter according to different
optimal settings for a pressure level A0 of 400 kPa.
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Conventionally, only an empirical adjustment of the frequency is realized and

based on the knowledge of the transducer features (central frequency fc and band-

width). However, the empirical settings never take into account the imperfections

of the transducer. In addition, the properties of the explored medium are ignored

in the setting choice. Our method of automatic adjustment accommodates these

unknowns. It is made from objective measurements to optimize an image criterion,

such as contrast. It finds the optimal setting that is difficult to predict analytically.

One or more parameters can be set. The optimal choice of frequencies f1 and f2
seems to be the most efficient in comparison with the complexity of the optimization.

The adjustment of the amplitudes does not bring a gain as large, given the restricted

bandwidth of the transducers.

Finally, a real-time implementation can be envisaged in view of the low calcu-

lation time of the optimization. However, there are several disadvantages. First, it

is necessary to have a programmable analogue transmitter. Secondly, although our

technique can propose optimal parameters for each line of the image, it is preferable

to perform optimization on the whole image. The image is thus more homogeneous

with a single resolution.

3.2.2 Imaging by Pulse Inversion

This second imaging method is the most used technique. It is therefore important to

confirm the previous results. Moreover, a first study has already shown its interest

in optimal command [Mleczko et al., 2007].

To demonstrate the feasibility and the interests of our method, we propose to

carry out a series of simulations and an experimentation. We will demonstrate,

through simulations, the optimality and the adaptability of our closed loop system

in three steps:

1. we check empirically that the cost function (the CTR) does have an global

maximum;

2. we check that the system automatically searches for optimal excitation param-

eters;
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3. we check that with a variation of the microbubble population, our adaptive

system automatically provides the best CTR during the full examination du-

ration.

Finally, we validate our concept through experimental measurements.

3.2.2.1 Setting of the Excitation Frequency

This first optimization, the simplest, is based on the same principle as before

with the optimization in harmonic imaging by nonlinear autoregressive filtering.

Note, however, that the CTR we want to maximize operates on the pulse inversion

summation signal. First, we will begin by confirming the existence of a maximum

and its automatic search. Then we will check the adaptive nature of our method.

Finally, we will integrate an axial resolution constraint.
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Figure 3.13 – Simulations of the optimizations using the excitation frequency f0 in pulse inversion imaging for
different pressure levels A0. (a) Empirical searches of the CTR maxima as a function of f0,k. The automatic
optimization path for the pressure level A0 = 400 kPa is marked in black. (b) Automatic search of CTR using f0,k
by an algorithm using the gradient.

3.2.2.1.1 Case 1 : For this first case, Fig. 3.13a shows the CTR as a function

of the excitation frequency f0. The CTR maximum reaches 32.73 dB for an optimal

frequency of 1.75 MHz if the A0 pressure level is 400 kPa. Then, an automatic

optimization by the gradient algorithm is presented in Fig. 3.13b. Fig. 3.13b at the

top shows the evolution of the frequency f0,k as a function of the iterations k , while
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Fig. 3.13b at the bottom shows the corresponding CTR. Note that the optimization

for a pressure level A0 of 400 kPa is also reported in 3.13a with a black line.

The results are close to those observed in harmonic imaging by nonlinear au-

toregressive filtering. However, the optimal frequencies are very different, and the

corresponding CTR. The imaging method thus has a strong influence in the choice

of the excitation parameters to optimize the CTR.

As previously, Fig. 3.14 shows three synthetic images for the three frequencies:

the central frequency fc of the transducer, two-thirds of the center frequency fc of

the transducer and the optimal frequency f0,opt for a pressure level A0 of 400 kPa.

We can make the same remarks as before, i.e. that the best image is that obtained

for the optimal frequency f0,opt.

lateral (mm)

de
pt

h 
(m

m
)

 

 

0 2 4 6 8 10

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

40

45

50

(a)

lateral (mm)

de
pt

h 
(m

m
)

 

 

0 2 4 6 8 10

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

40

45

50

(b)

lateral (mm)

de
pt

h 
(m

m
)

 

 

0 2 4 6 8 10

0

5

10

15

20

25

30

0

5

10

15

20

25

30

35

40

45

50

(c)

Figure 3.14 – Synthetic images in pulse inversion imaging for a pressure level of A0 = 400 kPa, where the excitation
frequency is (a) the central frequency fc of transducer (f0 = 3.5 MHz), (b) the two-thirds of the center frequency
fc of the transducer (f0 = 2.33 MHz), (c) the optimal frequency (f0,opt = 1.77 MHz).

Fig. 3.15 shows the experimental results which the frequency f0,k is plotted

as a function of the iterations, and the CTR measurements corresponding. The

optimization converges after about six iterations. Note that the large variations of

the CTR are due to the microbubbles movement and the evolution of the insonified

population.

3.2.2.1.2 Case 2 : This second case presents a new property of our method: the

ability to adapt itself to the medium in order to always offer the best CTR during

the examination. In order to check that our method proposes optimal and adaptive

values of the excitation parameters, we carry out three simulations. In Fig. 3.16,
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Figure 3.15 – Experiment of automatic optimization using the excitation frequency f0 in pulse inversion imaging by
a gradient algorithm.

we plotted the CTR evolution and the evolution of the excitation frequency f0 as a

function of the iterations k and when:

1. ten microbubbles of radius R0 are present;

2. five microbubbles of radius 2R0 are present;

3. the microbubble number is ten with a radius R0 up to the tenth iteration, then

there are only five with a radius of 2R0. This choice looks like microbubble

destruction. In this case, the smaller ones disappear first.

The results shown in Fig. 3.16 show that for each microbubble population, the fre-

quency and the CTR converge to a stable value. When the microbubble population

changes during the examination, the technique adapts itself without bias. We check

that the radius has an impact on the optimal frequency and on the CTR, since it

affects the microbubble resonance frequency. The optimal frequency is thus different

for each type of microbubbles, and also for backscattered energy.

3.2.2.1.3 Case 3 : Finally for the last configuration, we want to take into

account the modification of the axial resolution of the image. Indeed, when the
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Figure 3.16 – Simulations of the CTR optimizations for a pressure level A0 of 400 kPa in the presence of an evolution
of the microbubble properties during the optimization. The first optimization is performed with ten microbubbles
of radius R0; the second with five microbubbles of radius 2R0. The third optimization starts with ten microbubbles
of radius R0 up to iteration 10 and then with five microbubbles of radius 2R0.

proposed frequency is lower than the central frequency fc of the transducer, the

resolution is degraded in favor of the contrast. However, we can apply a constraint

that sets the resolution. For this reason, the number of cycles Nck becomes dependent

on the iteration and therefore on the frequency f0,k so that the excitation duration

is constant whatever the frequency f0,k:

Nc(k)

2f0,k
= 2Ttot(k)

2 = cte, (3.10)

where 2Ttot(k)2 is the time length of the excitation at the iteration k. In this case,

Nc(k) decreases when f0,k decreases.

Fig. 3.17 shows the CTR optimization by the frequency f0,k by applying the

constraint of a constant axial resolution. Fig. 3.17a shows the empirical search of

the CTR maximum as a function of the excitation frequency f0 and the transmission
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bandwidth. Fig. 3.17b shows the optimization by the gradient algorithm of the

excitation frequency f0. Note that the CTR and the gains are less important in

this configuration, since the small number of cycles Nc reduces the good separation

of the harmonic components. Finally, the system converges to the maximum CTR

with the same speed as in the simulation presented in Fig. 3.13b.
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Figure 3.17 – Simulations of optimizations using the excitation frequency f0 in pulse inversion imaging for different
pressure levels A0 and with constant axial resolution. (a) Empirical search of the CTR maxima as a function of
the excitation frequency f0,k for different transmission bandwidths. (b) Automatic search of the CTR using the
excitation frequency f0,k for a transmission bandwidth of 100 %, or a constant axial resolution of from 0.43 mm.

Two new synthetic images are calculated. The first is calculated when the

excitation frequency is two-thirds of the center frequency fc with an axial resolution

of 0.43 mm, while the second is at the optimal frequency f0,opt previously obtained.

Note that the image at the center frequency fc of the transducer has already been

calculated and presented in Fig. 3.14a.

We tested pulsed inversion imaging in the same way as nonlinear autoregressive

harmonic imaging. The detailed results are presented in appendix B (p. 145). The

corresponding CTR are presented in the table 3.3. We check that by increasing the

degree of freedom, the optimized CTR can increase.

3.2.2.2 Discussions

The CTR optimization in pulse inversion imaging is carried out automatically and

simply, without taking into account any a priori knowledge of the medium and
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Figure 3.18 – Synthetic images in pulse inversion imaging for a pressure level of A0 = 400 kPa and with a constant
axial resolution of 0.43 mm, where the frequency of the excitation is (a) two thirds of the center frequency fc of the
transducer (f0 = 2.33 MHz), (b) the optimal frequency (f0,opt = 1.38 MHz).

of the transducer b. The performances are summarized in the table 3.3. Our

method is simple for two reasons. First, optimization is performed iteratively using

simple implementation algorithms. Then, the optimization is carried out only with

a reduced number of parameters (maximum three). It offers a suitable choice of

parameters in just a few iterations.

Optimization
Parameters

f0 f1, f2 α with
f1,opt and
f2,opt

f1,f2 and α

CTR (dB) 32.73 34.32 34.36 34.84

Table 3.3 – CTR optimization simulations in pulse inversion imaging in different optimal settings for a A0 of 400
kPa pressure level. The CTR increases with the number of optimization parameters.

The optimization is obtained by feedback. This closed loop system finds the

best compromise between the transducer bandwidth and the frequency response of

microbubbles and tissue. Usually, this compromise was made empirically. However,

achieving this compromise requires the most accurate knowledge of the contrast

medium, tissue and transducer. With our optimization algorithm, no prior knowl-

edge is required. The algorithm adapts itself the excitation parameters, so that

the energy backscattered by the microbubbles is maximized, while minimizing that

backscattered by the tissue, in the transducer bandwidth. Other techniques only

propose the maximization of the microbubble contribution or only the minimization

bExcept the first three values of frequency, but their choices only affect the rate of convergence.
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of the tissue contribution [Couture et al., 2008]. Our method has the advantage of

realizing both simultaneously. Several remarks can be made.

First, the optimal frequency for the CTR is neither the center frequency fc of

the transducer nor the resonant frequency of the microbubbles.

Secondly, the contrast is realized on the harmonic components of the backscat-

tered signal in pulse inversion imaging. It is therefore necessary to find an excitation

which allows the reception of these harmonics over the greatest bandwidth.

Third, our optimization method adapts itself the frequency throughout the exam-

ination, i.e. by taking into account the changes in the properties of the microbubble.

Experimentally, even if contrast agents are non-stationary, the optimization proposes

new optimal parameters to adapt itself to the remaining microbubble population.

If contrast agents does not change, the CTR does not change. This adaptability is

also valid if the tissue or transducer varies. Note that the speed of convergence can

allow us to reset the parameter µk of the optimization algorithm if the environment

evolves a lot.

For example, our method can particularly well adjust to contrast echocardiogra-

phy. In this case, our optimization with a choice of frequency resolution offers the

best compromise between the CTR and the resolution, which privileges the CTR to

the detriment of the resolution. In both cases of the resolution choice, an increase of

the CTR leads to an improvement in the contrast of the image. This improvement

can help the physician to propose a better diagnosis.

3.2.3 Imaging by Phase and Amplitude Modulation

This latter imaging method is also widely used. It allows us to validate definitively

our concept in contrast imaging, and to observe the influence of the imaging method

on the optimal parameters.

Imaging by phase and amplitude modulation was tested in the same way as other

imaging methods. To avoid overloading this thesis, the detailed results are moved

in appendix C (p. 151). Only the table 3.4 summarizing the results is presented

below.

For this last imaging method, the parameter optimization has led us to maximize

the contrast without a priori knowledge of the medium, the transducers and more
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generally the system. The performances that are summarized in the table 3.4 confirm

that the more the number of optimization parameters increases, the more the CTR

increases.

Optimization
Parameters

f0 f1, f2 α with f1,opt
and f2,opt

f1,f2 and α

CTR (dB) 32.17 32.58 32.95 34.92

Table 3.4 – CTR optimization simulations in imaging by phase and amplitude modulation in different optimal
settings for a A0 of 400 kPa pressure level. The CTR increases with the number of optimization parameters.

3.2.4 Application to Tissue Harmonic Imaging

The latter case shows the method flexibility. We have placed ourselves in a con-

text of native harmonic imaging, i.e. without microbubbles. The objective is

then to maximize the harmonic energy backscattered. To do this, it is sufficient

to modify only the cost function. To optimize the harmonic energy by reducing

the fundamental energy, we propose to maximize the ratio CTHF (“Contrast to

Tissue Harmonic and Fundamental ”) between the backscattered harmonic and the

backscattered fundamental energy:

max
w

(CTHF) = max
w

(

E2H(w)

EF (w)

)

, (3.11)

where E2H is the harmonic energy of the backscattered signal and EF the energy of

the fundamental. We focus only on the setting of the excitation frequency f0 with

w = f0.

Fig. 3.19 represents the automatic optimization of the CTHF ratio during the

iterations k; while at the top, the associated excitation frequency f0 is noted during

the iterations k. As for the CTR optimization, the harmonic energy in comparison

with the fundamental energy is maximized in just a few iterations. The optimal

frequency is again different from that usually proposed.

First, we can note that the optimization converges to different optimal frequencies

as a function of the pressure level A0, which is not taken into account in the usual

empirical choice. Then, the optimal frequency f0,opt does not correspond to the usual

empirical choices. Moreover, the optimal choice of the transmit frequency provides

better harmonic reception than the usual choice.
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Figure 3.19 – Simulation of the optimizations using the excitation frequency f0 in tissue harmonic imaging for
different pressure levels A0 using the excitation frequency fk by an algorithm using the gradient.
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Figure 3.20 – Synthetic images in tissue harmonic imaging for a pressure level of A0 = 400 kPa where the excitation
frequency f0 is (a) the center frequency fc of the transducer (fc = 3.5 MHz), (b) the two-thirds of the center
frequency fc of the transducer (2/3fc = 2.33 MHz), (b) the optimal frequency (f0,opt = 2.79 MHz).

We can observe these results on synthetic images. We compute here several cases:

the first where the excitation is at the central frequency fc of the transducer, the

second at two-thirds of this frequency and the latter at the optimal frequency f0,opt
for a pressure level A0 of 400 kPa.

The goal was to enhance harmonic energy from the tissues. Figs. 3.20b and

3.20c show the tissue response (above the pipe) that we wanted to enhance. The

image calculated with an excitation at the optimal frequency (Fig. 3.20c) makes it

possible to distinguish tissue areas that were not visible in the other images.

To validate the concept, a first experiment was carried out under the same

conditions as the previous simulation. Images of sixty lines have been made on
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Figure 3.21 – Experiment of automatic optimization using the frequency of excitation f0 in tissue harmonic imaging
by a gradient algorithm.

a tissue phantom (Model 054GS “General Purpose Ultrasound Phantom”, CIRS,

Norfolk, VA, USA) where a hyper-echogenic inclusion of a 8 mm-diameter is present

at a depth of 4 cm. Fig. 3.21 shows the automatic optimization of the CTHF ratio

during the iterations k at the bottom; while at the top, the associated excitation

frequency f0 is noted during the iterations k. These results confirm those presented

above. As an illustration, Fig. 3.22 shows the non-optimized images and the

optimized image. The latter has a better contrast due to a lower energy of the

surrounding tissue compared to the hyperechoic inclusion.
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Figure 3.22 – Experimental images in tissue harmonic imaging where the excitation frequency f0 is (a) the center
frequency fc of the transducer (fc = 4 MHz), (b) the two-thirds of the center frequency fc of the transducer
(2/3fc = 2.67 MHz), (b) the optimal frequency (f0,opt = 2.02 MHz).

In a second experiment, we want to increase the number of input command

parameters. To solve this problem and demonstrate the adaptation facility to
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different imaging techniques, we choose to search for the pulse inversion imaging

command (see page 67). The parameter number is increased to three, that is f1,

f2 and α. Fig. 3.23a represents the CTHF as a function of the iterations k at the

bottom and the parameters in the top of both figures. As an illustration, Figs. 3.23b

and 3.23c show a non-optimized image and optimized image. These results confirm

the correct functioning of our method for a large number of cases of ultrasound

imaging.
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Figure 3.23 – (a) Experiment of automatic optimization using the transmit frequency f0 by the Nelder-Mead

algorithm in tissue pulse inversion imaging by a gradient algorithm. The frequencies f1 are written in solid lines,
while the frequencies f2 are dotted. Associated experimental images, where the frequency of excitation is (b) the
two thirds of the center frequency fc of the transducer (f0 = 2.67 MHz) and (c) the optimal frequency (f0,opt = 2.02
MHz).

3.2.5 Conclusion

Optimization of an image quality criterion can be achieved by correctly adjusting

excitation parameters. This method is simple since it regulates a restricted number

of parameters that describe the excitation. The usual choice determined empirically

proves to provide only exceptionally the global maximum of the CTR. However,

we do not advocate any adjustment values, since this role belongs to our method.

It has the advantage of taking into account the specificities of the microbubbles,

the tissue, the transducers and the imaging method. We have summarized in the

table 3.5 the different excitation settings according to different imaging methods for

a pressure level A0 of 400 kPa. While it was common to use the same excitation

parameters whatever the imaging method, our simulations and experiments show

that it is important to distinguish. But it becomes very difficult to determine this
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choice empirically by taking into account as much information as possible. Our

method proposes to free from all the a priori information inaccessible in practice

to determine the maximum of the cost function (here CTR or CTHF). Moreover,

although some parameters did not make a significant gain, other imaging meth-

ods might have a different behavior. For example, recent studies show that the

compression phase is the most important phase for a microbubble to generate sub-

harmonics [de Jong et al., 2007]. In this case, the α ratio could be important.

Optimization
Parameters

HI-NAR PI CPS

f0 (MHz) 2.28 1.75 1.69
f1 (MHz) 2.89 1.86 1.73
f2 (MHz) 2.26 1.67 1.69
α with f1,opt and
f2,opt

0.72 0.99 0.93

f1 3.22 1.4 1.31
f2 1.99 2.23 2.15
α 0.52 0.4 0.45

Table 3.5 – Optimal parameters of the simulations according to the different optimizations for a pressure level A0

of 400 kPa (HI-NAR: harmonic imaging by nonlinear autoregressive filtering, PI: pulse inversion imaging, CPS:
imaging by phase and amplitude modulation).

Moreover, our method is adaptive. It can adapt itself to changes in the medium

to be imaged, such as the evolution of the microbubble population or the sensor

aging.

We did not wish to compare the performances between the different techniques.

The results between the different techniques are difficult to compare since many

criteria in the image change. Thus harmonic imaging by nonlinear autoregressive

filtering offers a better contrast, but it is to the detriment of the resolution that

other techniques can propose.

Finally, our method can also be applied to all ultrasound imaging techniques and

not only to contrast imaging. It is sufficient to find a cost function adapted to the

criteria we wish to optimize. This could be, for example, a criterion on resolution.

We have shown by our simulations that this adaptation is possible.
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3.3 Optimal Command by Family of Sine Waves

Modulated in Frequency

The second family consists of sine waves modulated in frequency. Analytical models

of microbubbles have shown that the parameter choice for the modulation law is im-

portant in order to find the optimal microbubble backscattering [Barlow et al., 2011].

However, this work uses only a linear law. A study in tissue harmonic imaging has

shown its interest in the search for a nonlinear modulation law [Song et al., 2011].

We propose to look for the law parameters. We make the choice of a polynomial

law such as:

fk(t) = f0,k + β1,kt+ β2,kt
2 + β3,kt

3 (3.12)

The signal is a sine wave modulated in frequency whose envelope is Gaussian

[Wilhjelm, 1993] such as:

xk,ϕ(t) = A · exp

[

−2

(

̟(tp− t0)

tm

)2
]

sin
(

2π
(

f0,k + β1,kt+ β2,kt
2 + β3,kt

3
)

t+ φϕ

)

,

(3.13)

where tm = 5.7 µs and ̟ = 3. Note that for compression step, the filter c(t) is

written:

ck,ϕ(t) = A · exp

[

−2

(

α(tp− t0)

tm

)2
]

sin
(

4π
(

f0,k − β1,kt− β2,kt
2 − β3,kt

3
)

t+ φϕ

)

.

(3.14)

CHI CPI
Backscattered Energy (dB) −36.2 −31.6
f0 (MHz) 3.6 2.9
β1 (THz/s) 37.5 −1.6

Table 3.6 – Simulations of the global maxima of the backscattered energy by a non-encapsulated microbubble with
a 2.5 µm-radius when the excitation is a chirp and associated parameters of the modulation law (CHI: harmonic
imaging by chirp; CPI: imaging of chirp inversion).

In a preliminary study, we looked for the parameters of the modulation law

f(t) = f0 + β1t which maximize the energy backscattered by a non-encapsulated

microbubble of 2.5 µ m radius without taking into account the propagation. The

energy transmitted to the microbubble is normalized in such a way that it is constant.

We have observed that the imaging by chirp inversion obtained better performances
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in terms of harmonic energy backscattered by microbubbles than harmonic imaging

by chirp (table 3.6).

We have therefore chosen to use imaging of chirp inversion.

Moreover, we have shown that increasing the polynomial order can increase the

energy backscattered by the microbubble (table 3.7). These promising results led us

Polynomial order of the modulation law 1 2
Backscattered maximum energy (dB) −31.6 −29.2

Table 3.7 – Simulations of the global maxima of the backscattered energy by a non-encapsulated microbubble with
a 2.5 µm-radius when the excitation is a chirp and associated parameters of the modulation law (CHI: harmonic
imaging by chirp; CPI: imaging of chirp inversion).

to test this method with a more sophisticated cost function: the CTR.

We distinguish several possible optimizations. In a first step, we consider a linear

modulation law. Then we complicate this law by increasing the polynomial order

from two to three.

3.3.1 Setting of a Linear Modulation Law

This first case considers a linear modulation law such as:

fk(t) = f0,k + β1,kt (3.15)

Fig. 3.24 presents the optimization of f0 and β1. Fig. 3.24a shows the empirical

optimization of CTR as a function of f0 and β1, while Fig. 3.24b presents the

automatic optimization by the Nelder-Mead algorithm. CTR, β1 and f0 are as

a function of the iterations k, respectively at the bottom, the middle and the top.

Note that the automatic optimization is plotted by a white line on Fig. 3.24a.

These results show that the CTR has a maximum when the signal is modulated

(β1 6= 0) and can be retrieved automatically in a few iterations k.

3.3.2 Setting of a Quadratic Modulation Law

This second case considers a quadratic term supplementary to the first law such as:

fk(t) = f0,k + β1,kt+ β2,kt
2 (3.16)

101



PROOFREADIN
G

CHAPTER 3. OPTIMAL COMMAND BY SIGNAL FAMILIES

−400 −200 0 200 400
1

1.5

2

2.5

3

3.5

4  

β
1
 (GHz/s)

 

F
re

qu
en

cy
 f

0 (
M

H
z)

−5

0

5

10

15

20

25

30

35

CTR (dB) Nelder−Mead

(a)

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

1.25
1.5

1.75
2

2.25
2.5

Iterations

f 0 (
M

H
z)

 

 

A = 50 kPa

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−80
−60
−40
−20

0
20

Iterations

β 1 (
G

H
z/

s)

 

 

A = 50 kPa

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
30
32
34
36
38
40

Iterations
C

T
R

 (
dB

)

(b)

Figure 3.24 – Simulations of the optimization of linear modulation law in imaging by chirp inversion for a pressure
level A0 of 50 kPa. (a) Empirical search of the CTR maximum as a function of f0 and β1. The automatic
optimization path is written in black. (b) Automatically search for CTR using f0 and β1 with the Nelder-Mead

algorithm.

Fig. 3.25 shows the optimization of f0, β1 and β2. Fig. 3.25a represents the

empirical optimization of CTR as a function of β1 and β2 where f0 is set to the

optimal value during the optimization of linear law. Fig. 3.25 presents the automatic

optimization of the CTR as a function of the iterations k, β1 and β2 (middle) and

f0 (top).

These results show first that the CTR has a maximum when the law has a non-

zero quadratic term (β2 6= 0). However, the gain with respect to the linear law is

low, probably because of the restricted bandwidth of the transducers. Moreover, the

empirical optimization reveals the presence of several local maxima. The automatic

search can find the global maximum only if the algorithm initialization is correctly

chosen.

3.3.3 Setting of a Cubic Modulation Law

This third and last case adds a cubic term to the law as defined by the equation

3.12. Fig. 3.26 shows the automatic optimization where the CTR (bottom) is as a

function of the iterations k, β2 and β3 (middle), finally f0 and β1 (top).

These results show first that the CTR has a maximum when the law has a non-

zero cubic term (β3 6= 0). However, the gain with respect to the quadratic law is

small, probably because of the restricted bandwidth of the transducers.
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Figure 3.25 – Simulations of the optimization of the quadratic modulation law in imaging by chirp inversion for
a pressure level A0 of 50 kPa. (a) Empirical search of the CTR maximum as a function of f0, β1 and β2. The
automatic optimization path is written in black. (b) Automatically search for CTR using f0, β1 and β2 by the
Nelder-Mead algorithm.

3.3.4 Discussions

The optimization with this second signal family shows that it is possible to optimize

a cost function such as CTR by different signal families. This choice is made on the

basis of a priori knowledge. However once done, no further information is needed

to reach the maximum.

Law Linear Quadratic Cubic
CTR (dB) 39 39.2 39.3
f0 (MHz/s) 1.89 1.88 1.91
β1 (GHz/s) 14.95 10.5 10.3
β2 (GHz2/s2) - −47.2 −47
β3 (GHz3/s3) - - −16.8

Table 3.8 – Optimal simulation parameters according to the different optimizations for a pressure level A0 of 400
kPa in imaging by chirp inversion.

The choice of the modulation law makes it possible to improve the performances.

We stopped at order three. However, the order increase always allowed to reach a

greater maximum when the order was greater (table 3.8). Moreover, the parameter

values do not change much with the order increase. This observation could allow

to make a first optimization of f0 and β1, followed by optimizations of a single

parameter until the desired order.
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Figure 3.26 – Simulation of the automatic optimization of the cubic modulation lawin imaging by chirp inversion
for a pressure level A0 of 50 kPa using f0, β1, β2 and β3 by the Nelder-Mead algorithm.

However, note that the CTR optimization is not as important as the empirical

search for backscattered energy for the non-encapsulated microbubble could show.

This can be explained, on the one hand, by the fact that the CTR takes into account

the tissue behaviour and, on the other hand, because the microbubble properties

tested were not the same. The parameters optimization of a polynomial law is

therefore highly dependent on the contrast product used. The advantage of our

method is to always offering the maximum of CTR.
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Optimal Command of Transmitted

Waveform

I
n the previous chapter, we have imposed a suboptimal waveform determined

from a family of parametrized signals. The disadvantage of this technique

is to order the prior knowledge of a priori information to choose the signal

family. But its advantage is to simplify the evaluation of parameters. We therefore

investigate a new technique that avoids any a priori knowledge. Moreover, the

method must provide performance at least similar to an optimization per family of

signals.

We will therefore begin by explaining the principle of our method. To understand

its operation, we will write about the problem of optimal command in the case where

the medium is linear. Finally, we will optimize the contrast in the same condition

as for the previous chapter.

4.1 Method

The principle of the optimal command of transmitted waveform follows the diagram

4.1. The idea consists in exciting a filter, of the non-linear autoregressive kind with

variable parameters, by any signal (sinus wave or random). Here, the excitation

signal serves to a priori and simply send energy into the system to be studied.

The filter parameters which guarantee the maximum criterion are then optimized

iteratively. The signal thus created converges towards an optimal solution.
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Figure 4.1 – Block diagram of optimal command of transmitted waveform for a linear medium with sinus wave
excitation.

The optimization parameters are the w parameters of a nonlinear autoregressive

filter described by the following equation:

x̂k(t) = x
T
t wk, (4.1)

where T is the symbol of the transpose and

xt = [xt−1, xt−2, . . . , xt−M+1, x
2
t−1, xt−1xt−2, . . . , x

2
t−M+1, x

3
t−1, x

2
t−1xt−2, . . . , x

3
t−M+1]

T ,

w = [w1(1), w1(2), . . . , wM+1,w2(1, 1), w2(1, 2), . . . , w2(M − 1,M − 1),

w3(1, 1, 1), w3(1, 1, 2), . . . , w3(M − 1,M − 1,M − 1)]T .

The memory M of the filter is chosen to be three, so as to reduce the number of

parameters to nineteen.

This signal constitutes the system excitation where the parameters are searched

using the Nelder-Mead algorithm.

4.2 Optimal Command of Waveform for a Linear

Medium

In order to understand the principle of our method, we first optimize the backscat-

tered energy Ebubble of a system in linear operation:

max
w

(Ebubble) . (4.2)

We use the microbubble model without propagation with a low pressure level.

The signal x(t) is chosen as the reference signal described by the equation 3.8 at the

central frequency of the transducer, i.e. a sine wave signal apodized by a Gaussian
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function. At the first iteration, the filter parameters are initialized and the signal

x(t) is transmitted to the studied medium. Then, from the signal backscattered

by the microbubble and the chosen cost function, the optimization process of the

parameters is activated. At the second iteration, the signal x(t) is modified by a

filter composed of new parameters. The optimization process is then repeated until

a solution is converged.

Fig. 4.2 represents the optimized command when the process has converged.

The waveform of this signal corresponds, as expected, to the signal backscattered by

the microbubble returned temporally. We also decomposed the backscattered signal

into a linear and quadratic component using a nonlinear autoregressive filter. We

compare the decomposition of the input signal with the output signal.
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Figure 4.2 – Comparison between the excitation after optimization and the backscattered signal for a linear system
(at the top the excitation signal and the backscattered signal, in the middle their linear components of a nonlinear
autoregressive filter; their quadratic components of a nonlinear autoregressive filter). The ordinate axis corresponds
to normalized pressure values.

The results in Fig. 4.2 show that the optimal command proposes an excitation

which corresponds to the time reversal of the backscattered signal. Each component

of the excitation is also the time reversal components of the backscattered signal.

This result confirms the well-known results of matched filtering (or time reversal).
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4.3 Optimal Command of Waveform for a Nonlinear

Medium

Before to apply the method to full imaging systems, we continue our analysis.

4.3.1 Optimal Command of Backscattering

We replace the linear system with a nonlinear system. This system is always

composed of a microbubble, without taking into account the propagation. However,

the incident pressure level exciting the microbubble is much higher.

Fig. 4.3 represents the same signals as the figure ref fig: part2: chap3: fig2, but

considering this non-linear system.
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Figure 4.3 – Comparison between the excitation after optimization and the backscattered signal for a nonlinear
system (at the top the excitation signal and the backscattered signal, in the middle their linear components of a
nonlinear autoregressive filter; their quadratic components of a nonlinear autoregressive filter). The ordinate axis
corresponds to normalized pressure values.

The results show that it is much more difficult to interpret them when the system

is nonlinear. The linear component of the decomposition shows us that the excitation

signal is exactly the opposite of the backscattering linear component. If we compare

it with the time reversal, our method tries to take into account the nonlinearities.

While the temporal reversal considers only a simple convolution described by the
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equation 1.1, our method extends this concept by a decomposition such as:

y(t) =

M
∑

i=1

w1(i)x(t− i) +

M
∑

i=1

M
∑

j=i

w2(i, j)x(t− i)x(t− j) + . . . (4.3)

Finally, our adaptive approach indicates that the optimal signal does not cor-

respond to the higher order signals returned. This concept is checked for the first

order, but not for higher orders. One way to detect the nonlinearity degree could

be to quantify the temporal non-reversal criterion of higher orders.

4.3.2 Optimal Command of Waveform in Imaging by Pulse

Inversion

We now place ourselves in a context of harmonic contrast imaging where the cost

function to be optimized is the CTR. The principle is described by the diagram 4.4.

To avoid the choice of the signal x(t), we propose to excite the system by a noise. The

simulation model that we use is a simplified model which does not take propagation

into account and which assimilates the tissue behaviour to fat scatterers. This last

choice was made to have a reference.

Figure 4.4 – Block diagram of optimal waveform in imaging by pulse inversion.

We repeat this operation ten thousand times to note the CTR values obtained

without optimization. Fig. 4.5 shows the histogram of the CTR measurements when

the excitation is a noise. If the CTR distribution is approximated by a Gaussian

distribution of mean 26.7 dB and variance 2dB2. Note that when the excitation is a

sine wave modulated by a Gaussian at the optimal frequency f0,opt of 2.5 MHz, the

CTR reaches its maximum 30.44 dB (for sine wave excitation). When the system

input is a sine wave excitation at the center frequency fc of the transducer (ie 3.5

MHz) then the CTR reaches 26.18 dB.
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From the histogram, we deduce by the Monte-Carlo methodindexMethod!Monte-

Carlo that it is necessary to test a hundred noises to find at least one which gives a

CTR greater than or equal to the maximum CTR obtained by sine wave excitation

(switches in position 1). This optimal “noise” constitutes the signal x(t).

From this “optimal” noise, the optimization of the parameters w is done in a

closed loop by the Nelder-Mead algorithm to maximize the CTR (switches in

position 2). Fig. 4.6 shows this optimization where we have noted the CTR and the

parameters w as a function of the iterations k.

The CTR reaches a maximum of 31.25 dB. This maximum is higher than the CTR

obtained with noise only (30.47 dB) , than the CTR obtained when the sine wave

excitation is at the optimal frequency f0,opt, and than the CTR obtained when the

sine wave excitation is at the center frequency fc of the transducer. The transducer

filters noise around the frequency fc of 3.5 MHz. While a sine wave excitation of

frequency fc can only get a CTR of 26.4 dB, our method can improve the CTR by

4.85 dB. Note that from all the noises (about hundred) that maximize a CTR greater

than 30.47 dB, we have not yet found common temporal or frequency factors. This

work is ongoing.

4.3.3 Conclusion

Our technique makes it possible to free ourself from the signal family choice. It is

then possible to find a suboptimal filtered random excitation which maximizes the

CTR without any a priori knowledge available with difficulty. Note however that

it is necessary to test a hundred random signals to find one that greatly optimizes

the CTR, i.e. one hundred for ten thousand tested signals. We hope to reduce

this number significantly by identifying features common to the different noises that

maximized the CTR.
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Figure 4.5 – Histogram of the CTR measurements when the excitation is a noise.
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Figure 4.6 – Optimization of the CTR by the search for parameters w that describe the the excitation waveform.
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Chapter 5

Optimal Command of a Capacitive

Micromachined Ultrasound

Transducers

F
or about twenty years, alternatives to piezoelectricity in transduction

have appeared. One of the most promising technologies is the micro-

machined capacitive Micromachined Ultrasound Transducers, known as

cMUT [Haller and Khuri-Yakub, 1996, Sénégond, 2010]. These devices belong to

the family of microsystems and more particularly to the MEMS for Micro Electro

Mechanical Systems. They are made from microelectronic processes.

The cMUT consists of several hundred (or even thousands) of partially metallized

micromembranes (a few tens of micrometers in diameter) suspended above vacuum

cavities (Fig. 5.1).

15 mm

200 µm
20 µm

200 nm

Ultrasound Array Element of Array Unit Cell

Figure 5.1 – Structure of a cMUT at different scales.

In transmission, the application of an alternating voltage produces an electro-

static force generating the membrane displacement. The whole membranes then

produces an ultrasound wave propagating on the front face of the sensor. On the

other hand, in reception, when an ultrasound wave arrives at the front face of the
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sensor, the echo sets in motion the membranes which produce a variation in charges

at the sensor terminals when a bias voltage is applied to it.

The innovative potentials of these sensors in relation to conventional piezoelectric

technologies are numerous: reliability, mass production, miniaturization and elec-

tronics integration. In addition to manufacturing advantages, cMUTs have wider

bandwidths than piezoelectric transducers.

One of the main cMUT difficulties is that the electrostatic force is proportional

to the square of the tension and to the square of the membrane displacement. The

cMUT has a highly nonlinear behaviour, which results in the appearance of harmon-

ics in the generated ultrasound wave. Harmonic imaging is thus compromised. In

this chapter, we try to reduce the nonlinearity in the displacement of a single cell in

the context of harmonic imaging by optimal command (Fig. 5.2).

Medium
Reception

Rx
Image

Transmission
Tx

Imaging
Technique

Imaging
Technique

Optimization

cMUT

Figure 5.2 – Block diagram of the optimal command for cMUT in the context of harmonic imaging.

Some methods [Zhou et al., 2004, Novell et al., 2009] have been proposed to re-

duce the second harmonic at the cMUT output. Both methods consist in sending

the sum of two sinusoids of different frequencies whose amplitudes and phases are

correctly chosen. The first method excites the cMUT with two components at f0 and

2f0, while for the second method the two components are at f0 and 3f0. The second

harmonic at the cMUT output is reduced for a choice of amplitudes and phase of

the signal determined empirically. The empirical determination of the transmitted

signal parameters is a major handicap when it is necessary to transmit coded signals

(in phase or in frequency) more complicated than simple sinusoids. To eventually

replace the piezoelectric transducers with cMUT transducers, it is necessary to offer

the various imaging systems manufacturers the whole range of existing encodings,

whether in tissue imaging or in contrast imaging. Today, this is not the case since the

compensation of the cMUT nonlinearities is carried out empirically. The challenge

we want to address here is to be able to propose excitations capable of compensating
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for undesirable effects for existing coding techniques. To achieve this objective, we

must compensate automatically and adaptively the excitation, i.e. the command.

In this chapter, we will propose a method that looks for the optimal command

for the cMUT, so that the output reaches a target signal. We have developed two

approaches: a recursive method and an iterative method. We will begin by describing

the cMUT, then our different methods. Finally we present our simulation results

that we will discuss.

5.1 Material: Simulation of a cMUT

One of the models developed in the laboratory by Nicolas Sénégond and Dominique

Certon [Sénégond, 2010] consists of an approximation of the cell by a damped

mass-spring system having the characteristics of a plane capacitor with variable

inter-electrode space (Fig. 5.3) [Lohfink and Eccardt, 2005].

Figure 5.3 – First-order equivalent scheme of a capacitive transducer.

In order to avoid short circuits, the upper electrode is deposited on the silicon

nitride membrane (SiN) whose relative electrical permittivity is εmb. The equivalent

height of the capacitor is described by the following equation:

heq = hGAP +
hmb

εmb

. (5.1)

The membrane displacement is translated from the fundamental principle of

dynamics:

mmb ¨umb = Felec + Ffluid − 2ζ ˙umb − kstiffness (umb − heq) . (5.2)
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where the electrostatic force Felec is proportional to the square of the voltage and to

the square of the membrane displacement umb such as:

Felec = −
1

2

ε0SV 2

2u2mb

. (5.3)

The fluid force is derived from the radiation on itself of a rigid baffle piston in

a semi-infinite space by the Rayleigh integral [Stepanishen, 1978, Lingvall, 2004].

This equation is solved temporally by the Runge-Kutta method with the following

parameters to have a realistic membrane behaviour:































hGAP = 200 nm

hmb = 400 nm

ε0 = 8.85 · 10−12 F · m−1

εmb = 7.5

S = 10−10 m2

et











mmb = 15 · 10−13 kg

kstiffness = 1900 N · m−1

ζ = 7 · 10−9

Measured parameters Estimated parameters

For these operating parameters, the theoretical resonance frequency of the membrane

is identified at 5.6 MHz.

Although this model can reveal more the average cell behaviour, it can present

the nonlinear cMUT characteristics as well as the collapse phenomenon. The col-

lapse consists of the membrane collapse on the cavity bottom due to an unstable

equilibrium between the stiffness forces of the membrane and the electrostatic force.

Given that the electrostatic force Felec is proportional to the squared electri-

cal voltage, a DC bias voltage is added to the voltage at the cMUT terminals.

This continuous voltage thus makes it possible to limit the system nonlinearities.

We chose a polarization voltage at 65% of the collapse voltage to offer the best

compromise between the membrane displacement umb and the harmonics gener-

ated [Sénégond, 2010, p. 164].

This study is in the context of harmonic imaging. Given the bandwidth in

reception, an excitation whose frequency is less than the central frequency fc of

the transducer and therefore less than the cMUT resonance frequency fres is usually

used. In this framework, two cMUT behaviours have been identified: a forced regime

where the excitation frequency is much lower than the cMUT resonance frequency
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fres and a so-called intermediate regime at the half cMUT resonance frequency fres.

These behaviours are summarized in Fig. 5.4.
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Figure 5.4 – cMUT command for different frequencies and voltages (20% in red, 40% in green and 60% in blue of
the collapse voltage) on the first line. Displacement umb associated to the membrane in comparison with the cavity
size on the second line. Membrane displacement spectra on the third line.

5.2 Methods

The principle of optimal command is described in Fig. 5.5 where the objective is to

minimize the quadratic error e2 between a target signal and the cMUT output y:

min
h

(e2) = min
h

[

(x− y)2
]

(5.4)

It is therefore a pre-setting carried out at the manufacturer before any clinical use.
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Transmission
Tx

cMUT

Optimization
e(t)

y(t)

x(t)

x(t)

Figure 5.5 – Block diagram of cMUT optimal command to reach target signal x at output.

The optimal command takes the principle of a three-order nonlinear autore-

gressive and with a memory M . The cMUT input signal x̂ is constructed from

parameters and the target signal to be reached such as:

x̂(t) =
M
∑

i=1

h1(i)x(t− i) +
M
∑

i=1

M
∑

j=i

h2(i, j)x(t− i)x(t− j)

+
M
∑

i=1

M
∑

j=i

M
∑

k=j

h3(i, j, k)x(t− i)x(t− j)x(t− k)

(5.5)

In order to reduce the number of freedom degrees of the command, we restrict

ourselves to memory three, which results in a nine-parameter optimization consid-

ering that the kernels h are symmetric [Lacoume et al., 1997].

5.2.1 Optimal Recursive Command

The recursive method uses the recursive least squares algorithm. The filter minimizes

the error e between the target signal x and the cMUT output y such as:

et = xt − yt, (5.6)

where y is the cMUT response to the excitation x̂. The input signal x̂ is described

thanks matrix by the following equation:

x̂t = x
T
t ht−1, (5.7)
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where T is the transpose symbol and

xt = [xt−1, xt−2, . . . , xt−M+1, x
2
t−1, xt−1xt−2, . . . , x

2
t−M+1, x

3
t−1, x

2
t−1xt−2, . . . , x

3
t−M+1]

T ,

h = [h1(1), h1(2), . . . , hM−1,h2(1, 1), h2(1, 2), . . . , h2(M − 1,M − 1),

h3(1, 1, 1), h3(1, 1, 2), . . . , h3(M − 1,M − 1,M − 1)]T .

We obtain the coefficients of the filter h [Michaut, 1992] by the following equation:

ht = ht−1 +Ktetxt, (5.8)

with














Kt=
1
λo

(

Kt−1 − s(vtvTt )
)

s = 1
λo+xT

t vt

vt = Kt−1xt

(5.9)

where λo = 0.999 is the forgetting factor that offers the best performances.

5.2.2 Optimal Iterative Command

This second method calculates an mean squared error MSE for an whole signal:

MSE = E
(

(x− y)2
)

. (5.10)

Using the Nelder-Mead algorithm, the setting of the nineteen parameters mini-

mizes the mean squared error MSE at each new iteration. Thus, during an iteration,

the algorithm proposes new values for the parameters. This solution is sent to

the cMUT to measure the mean squared error MSE. From this measurement, the

algorithm proposes new values.

5.3 Optimal Command of Encoded Excitation for

cMUTs

We place ourselves in the context of harmonic imaging. Since there are many

imaging techniques with encoded excitations, we deliberately restrict the imaging
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techniques to three: second harmonic imaging, pulse inversion imaging and chirp

reversal imaging. These different cases will be analyzed in simulation.

5.3.1 Optimal Command for second harmonic imaging

We place ourselves in the context of second harmonic imaging. Given the reception

bandwidth, the excitation frequency is less than the central frequency fc of the

transducer.

In the framework of the optimal recursive command, we propose to reach a

target point derived from a signal with a frequency of 1 MHz and whose amplitude

represents a membrane displacement umb of ±10% of the cavity size. On the left, Fig.

5.6 shows the excitation signal at the top and the output of the cMUT compared to

the target signal at the bottom. On the right, we have represented the spectra of

these signals, and the spectrum of the cMUT output in the absence of optimization.
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Figure 5.6 – Simulation of the recursive optimization of the cMUT output when the target signal to be reached is
a sine wave signal of 1 MHz and amplitude representing a membrane displacement umb of ±10% of the size of the
cavity. (a) cMUT Command at the top. Normalized cMUT output in relation to the cavity size, target signal and
error at the bottom. (b) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output
before and after optimization at the bottom.

After optimization, the output has not quite reached the target signal, but the

result is still satisfactory. There is still a non-negligible spectral error especially for

the harmonic components. We propose two explanations. The first may be linked to

a too low memory choice of the filter; the second is probably related to the fact that

there is not enough information available to perform point-to-point optimization.

To correct this effect, we propose a method which calculates the command signal

in globality (optimal iterative command). An optimization will be achieved by
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transmitting a complete signal to the cMUT and searching for a target signal, and

not a target composed of a single point.

Fig. 5.7 shows the results of the iterative optimization when the target signal is

a cosine modulated by a Gaussian with a frequency of 1 MHz and whose amplitude

represents a membrane displacement umb of ± 10% of the cavity size. Fig. 5.7 (left)

shows the mean squared error MSE during the iterations k and the parameters that

describe the excitation signal. Fig. 5.7 (center) shows the excitation signal (top)

and the cMUT output and its target (bottom). Finally, Fig. 5.7 (right) shows the

spectra of these signals and the cMUT output without any optimization.
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Figure 5.7 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is
a sine wave signal of 1 MHz and amplitude representing a membrane displacement umb of ±10% of the size of the
cavity. (a) Mean quadratic error between the target signal MSE and the membrane displacement umb during the
iterations k with the input parameters of the system. (b) cMUT command at the top. Normalized cMUT output in
relation to the cavity size, target signal and error at the bottom. (b) Spectrum of the cMUT command at the top.
Spectrum of target signal and cMUT output before and after optimization at the bottom.

This optimization method makes it possible to reach the target signal more

faithfully with regard to the results obtained by the optimal recursive command. The

error reached −25 dB after one thousand iterations. The command is asymmetric in

amplitude since the positive amplitudes are smaller than the negative amplitudes.

This corresponds to the fact that the membrane is pulled towards the cavity bottom,

knowing that it is more difficult to push the membrane towards the outside than

towards the inside. The algorithm then proposes voltages much lower than the bias

voltage. This phenomenon is expressed spectrally by a cMUT excitation including

second and third harmonics. At the cMUT output, the harmonic components are

greatly reduced by 25 dB for the second harmonic. The performances are then

similar to the existing compensation techniques. However our method is automatic

and does not include very precise parameter settings. Indeed, their values may
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Figure 5.8 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is
a sine wave signal of 1 MHz and amplitude representing a membrane displacement umb of ±15% of the size of the
cavity. (a) Mean quadratic error between the target signal MSE and the membrane displacement umb during the
iterations k with the input parameters of the system. (b) cMUT command at the top. Normalized cMUT output in
relation to the cavity size, target signal and error at the bottom. (c) Spectrum of the cMUT command at the top.
Spectrum of target signal and cMUT output before and after optimization at the bottom.

change slightly without compromising a large change in the mean square error MSE.

Note that the proposed excitation solution has the same shape as the solution that

optimizes the error between a target signal and the pressure proposed by Oguz et

al. [Oguz et al., 2010].

The second objective of the optimal command is to reach a target signal with the

maximum amplitude. Indeed, the greater the amplitude, the greater the acoustic

pressure of the generated wave, while limiting the number of cells constituting the

cMUT. The new target signal is therefore at the same frequency of 1 MHz, but its

amplitude represents a membrane displacement umb of ±15% of the cavity size. The

figure 5.8 represents the results of this new optimal command.

The cMUT output is in this case faithful except for the strongest positive am-

plitude which is clipped. Indeed, it becomes physically impossible to obtain a dis-

placement of the membrane to the outside with this amplitude. However spectrally,

even if the performances are worse, the reduction of the second harmonic is still 10

dB.

We have also computed the optimal command for a target signal with a frequency

equal to the half resonance frequency fres. The performances are similar. The results

are moved to appendix D (p. 159).
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5.3.2 Optimal Command for pulse inversion imaging

In a context of pulse inversion imaging, it is important to be able to propose two

optimal commands for the two excitations required for the pulse inversion. Since

the first optimal command has been computed previously, we reproduce the search

for the optimal command but with a target signal with a phase shifted by 180◦.

The results are presented in the same way in Fig. 5.9.

100 200 300 400 500 600 700 800 900 1000
−300

−250

−200

−150

−100

−50

0

50

100

150

200

250

Iterations

P
ar

am
et

er
s

100 200 300 400 500 600 700 800 900 1000

−27

−24

−21

−18

−15

−12

−9

−6

−3

0

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
dB

)

(a)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

                                                                                                           α

   Time (µs)

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

   Time (µs)

D
is

pl
ac

em
en

t (
%

)

                                                                                                           β

 

 

target membrane error

(b)

0 1 2 3 4 5 6 7 8 9 10

−30

−20

−10

0

10

Frequency (MHz)

A
m

pl
itu

de
 (

dB
)

0 1 2 3 4 5 6 7 8 9 10

−85

−70

−55

−40

Frequency (MHz)

A
m

pl
itu

de
 (

dB
)

 

 

target membrane no correction

(c)

Figure 5.9 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is a
sine wave signal of 1 MHz, in opposite phase to the target signal presented in Fig. 5.7b, and amplitude representing
a membrane displacement umb of ±10% of the size of the cavity. (a) Mean quadratic error between the target signal
MSE and the membrane displacement umb during the iterations k with the input parameters of the system. (b)
cMUT command at the top. Normalized cMUT output in relation to the cavity size, target signal and error at the
bottom. (c) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output before and
after optimization at the bottom.

The target signal is again correctly reached, but with a slightly larger error.

Optimal command is performed by a nonlinear method that may require more

iterations. However, the algorithm proposes a different excitation of the solution

proposed in Fig. 5.7, which leaves the possibility to use the cMUT with encoded

excitations. Each of the optimal commands is saved in the ultrasound system and

then used in pulse inversion imaging with the cMUTs.

When the target signal has a frequency corresponding to the half resonance

frequency fres, the performances are similar and moved in appendix D (p. 159).

5.3.3 Optimal Command for imaging by chirp reversal

In order to show that our method can work with a target signal of our choice,

we propose an imaging method where the target signal is more complicated with a
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sinusoid modulated in frequency. We then place ourselves in the context of the chirp

reversal imaging [Bouakaz, 2008].
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Figure 5.10 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached
is a sinusoidal frequency-modulated signal where f0 = 1 MHz and β1 = 20 GHz/s, and amplitude representing a
membrane displacement umb of ±10% of the size of the cavity. (a) Mean quadratic error between the target signal
MSE and the membrane displacement umb during the iterations k with the input parameters of the system. (b)
cMUT command at the top. Normalized cMUT output in relation to the cavity size, target signal and error at the
bottom. (c) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output before and
after optimization at the bottom.

The first target signal is centered at the frequency of 1 MHz and modulated with

a linear modulation coefficient of 20 GHz/s, which corresponds to a high modulation

coefficient. The second target signal has an opposite modulation coefficient.

This optimization is presented in Fig. 5.10 in the same way as the other cases,

but where the target signal is frequency modulated.

The mean squared error MSE reaches −25 dB with an output from the cMUT

that correctly reaches the target signal. Spectrally the optimal command allows to

considerably reduce the harmonic frequencies.

To obtain both optimal commands reqiired for the imaging method, we optimize

with the target signal of the opposite modulation coefficient. The method proposes

again a solution that correctly reaches the target signal.

The iterative search for optimal command can work with imaging methods using

frequency modulation. If the objective is to make harmonic imaging by chirp , the

optimal command consists only of the excitation proposed in Fig. 5.10b. If the aim

is to make imaging by reversing frequency-modulated signals, it is sufficient to save

both optimal commands that we have presented in this section.
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Figure 5.11 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is
a sinusoidal frequency-modulated signal where f0 = 1 MHz and β1 = −20 GHz/s, and amplitude representing a
membrane displacement umb of ±10% of the size of the cavity. (a) Mean quadratic error between the target signal
MSE and the membrane displacement umb during the iterations k with the input parameters of the system. (b)
cMUT command at the top. Normalized cMUT output in relation to the cavity size, target signal and error at the
bottom. (c) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output before and
after optimization at the bottom.

When the target signal has a center frequency corresponding to the half resonant

frequency and has the same modulation coefficient, the performances are close

(appendix D, p. 159).

5.4 Conclusion

Our method makes it possible to reach a target signal at the output of a system,

such as the cMUT, by correctly choosing the input signal. This target can be freely

chosen without affecting performance. The advantage of our method is to offer

a solution determined automatically from a restricted number of parameters. The

optimal excitation compensates the cMUT nonlinearities at its output. However, the

amplitude of the target signal can not exceed a threshold. The membrane behaviour

seems to be the main cause of the nonlinearities. If the cMUT membrane can not

physically reach the desired displacement umb, it is no longer possible to propose an

excitation that corrects nonlinearities.

The next step will be to test our method with several cMUT membranes both

in simulation and experimentally. However, the results are encouraging.
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Conclusion

E
xisting ultrasound medical imaging systems have so far been able to

progress and show better quality images through improved system sen-

sitivity and post-treatments.

In this thesis, we focused not on these post-treatments but rather on the optimal

command of the excitation of the imaging system. The ambitious goal, which we

have set ourselves, was to find this command which optimizes a criterion in the

system (the contrast for example) by means of a feedback. Until now, there have been

few or no solutions for ultrasound imaging. The few methods proposed improved

only one criterion but did not reach the optimal one. Moreover, it was possible to

reach the optimum only empirically.

Our first major contribution was to simplify the complexity of the standard prob-

lem of optimal command by proposing realistic suboptimal parametric approaches.

Now our methods have the advantage of findinf the optimum automatically. The po-

tential ubiquity of our optimal command methods also includes some advantageous

properties. Here is a non-exhaustive list of these advantages:

1. the adjustment of the command is no longer a manual and difficult choice

for the manufacturer or for the clinicians since the method proposes itself an

optimal setting guaranteeing the best conditions of use;

2. no knowledge about the system or about the medium being explored is required

because the method adapts itself to conditions of use, variations in the system

or medium during the examination;

3. the optimization of a criterion is guaranteed at all times of the examination.

Three implementation stages of the loop back constitute the main part of the

difficulty and the success of the search for the optimal command:
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1. the cost function J(θ) must correctly describe the objective;

2. the variables θ which define the command must influence the cost function;

3. The algorithm must be robust enough to find the global maximum and it must

be fast enough.

By responding correctly to these three points, the principle of optimal command can

be applied in a large number of cases. Indeed, in absolute terms, the cost function is

independent of the simulation model or of the experiment, since it takes iteratively

into account only the measurements of the input and output signals of the imaging

chain. We first applied this principle to harmonic imaging systems. Next, another

major result of our approach is that it removes a technological barrier of considerable

importance. Indeed, our methods will allow a wider use of capacitive transducers

cMUTs in coded ultrasound imaging that was still inaccessible today. Finally, we

imagine an application in the whole of the imaging and in particular for Doppler

imaging.

Immediate implementation in commercial ultrasound scanner is not directly ex-

ploitable, since it is necessary to have a programmable analogue waveform generator.

However, with the growing development of electronics, the use of our techniques in

new ultrasonic imaging systems will be a major challenge for innovative companies

for the next decade.

In our point of view, we also envisage the use of algorithms that will increase

the convergence speed. For the same purpose, we will propose a reduction of

the parameter number without reducing the degree of freedom of the waveform

command. This will reduce the number of measurements per iteration.
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Appendix A

Optimization algorithm

O
ptimization algorithms are numerous. But all of them aim to minimize a

cost function a using parameters that the algorithm needs to determine.

Some algorithms offer better robustness and others a better convergence

speed. For example, in the case of very complex optimizations, metaheuristics, such

as simulated annealing, are a class of optimization algorithms that attempt to obtain

an approximate value of the global optimum. However, since the latter are relatively

complex, we have made the choice of simpler implementation algorithms.

In this thesis, we used two different algorithms: the gradient-based method and

the Nelder-Mead method. The first algorithm is reputed to be simple, while the

second algorithm offers better robustness.

A.1 Algorithm based on the Gradient

The feedback of our closed-loop systems corresponds to our optimization algorithm.

The algorithm optimizes a cost function J(w) in an iterative way. The algorithm

is based on the principle of gradient descent defined by the following recurrence

relation [Widrow and Stearns, 1985] :

wk+1 = wk + µk(∇J), (A.1)

where wk = [w1,k · · · wN,k]T is the vector of the N optimization parameters in the

iteration k b. The coefficient vector µk = [µ1,k · · · µN,k]
T leads the direction and

aMaximizing is to minimize the opposite of the function
bT is the symbol of the transpose.
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speed of convergence. Finally, the gradient at the iteration k and for the parameter

wi is expressed according to the following equation:

∇i,k(J) =
∂J

∂wi
=
J(wj,k, wi,k)− J(wj,k−1, wi,k)

wi,k − wi,k−1
. (A.2)

However, since the gradient is a ratio of two quantities of different dimensions,

we modify the recurrence relation such that:

wk+1 = wk + µk ·∆w, (A.3)

where ∆w = [∆w1 · · · ∆wN ]T . When the dimension of wi is a frequency, ∆wi is 50

kHz; while wi expresses the α ratiot (in chapter 3), then ∆wi is 5/100.

The direction of convergence is applied to the coefficient µk. This coefficient is

initialized with wi = 2 and is defined by equation A.4:

µi,k =

{

µi,k−1 if sign [∇i,k(J)] = sign [∇i,k−1(J)]

−
µi,k−1

2
if sign [∇i,k(J)] 6= sign [∇i,k−1(J)]

, (A.4)

where sign(t) is the sign function that is equal to 1 if t > 0, 0 if t = 0 and −1 if t < 0.

Note that an initialization phase of 3N steps is required to start the optimization.

A.2 Nelder-Mead Algorithm

The Nelder-Mead method is a nonlinear optimization algorithm [Nelder and Mead, 1965],

known to be more robust than the gradient method. It is sometimes called a simplex

method or “simplex downhill” and is based on the simplex concept. The simplex

is a generalization of the triangle to any dimension. Thus the algorithm seeks the

maximum of the cost function J by progressively surrounding it in the simplex.

First, an initialization phase is necessary to define the coordinates w′ = [w′

1, . . . , w
′

N+1]

of the N + 1 vertices of the first simplex, where N is the degree of freedom of the

cost function J . The cost function is evaluated in all vertices of the simplex.

Then the algorithm starts the iterative phase which looks for the minimum of

the cost function J :

142



PROOFREADIN
G

A.2. NELDER-MEAD ALGORITHM

1. the measurements of the cost function for the N + 1 vertices of the simplex

are sorted in ascending order and reindexed as:

J(w1) 6 J(w2) 6 · · · 6 J(wN+1);

2. the gravity center of the simplex wG from w is calculated to deduce the cost

function from these coordinates;

3. the cost function is evaluated at the point of reflection from wN+1 :

wR = wG + µR(wG − wN+1).

These coordinates correspond to the reflection point of the maximum of the

cost function with respect to the gravity center wG. If the reflection point wR

is better than the penultimate point wN and greater than the first point w1

(J(w1) 6 J(wR) 6 J(wN)) then a new simplex is formed by replacing the

worst point by wN+1 by the reflection point, and returning to step 1;

4. if the reflection point wR is better than the first point w1, then the simplex

does not contain the minimum of the cost function J . An extension point is

then determined such that:

wE = wG + µE (wG − wN+1) .

If the extension point wE is better than the reflection point wR (J(wE) <

J(wR)) then a new simplex is formed by replacing the worst point wN+1 by

the extension point wE. Otherwise a new simplex is constructed by replacing

wN+1 with wR. Return to step 1;

5. if the reflection point wR is greater than the penultimate point wN (J(wR) >

J(wN)), then a contraction point wC is determined such that:

wC = wN+1 + µC(wG − wN+1).

If the contraction point is better than the worst point (J(wC) < J(wN+1)),

then a new simplex is determined by replacing the worst point wN+1 with the

contraction point wC and return to step 1;
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6. if the contraction point wC is greater than the worst point wN+1 (J(wC) >

J(wN+1)), then the simplex is reduced by replacing all vertices such as:

wi = w1 + µ (wi − w1) ,

and return to step 1.

The reflection coefficient µR, the extension coefficient µE, the contraction coefficient

µC and the reduction coefficient µς are usually chosen such that:























µR = 1,

µE = 2,

µC = 1
2
,

µς = 1
2
,

It should be noted that it is sometimes necessary to normalize the vector w so that

all the parameters have the same order of magnitude for a good optimization.
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Optimal Command in Pulse

Inversion Imaging

T
his appendix shows the results of optimal command in pulse inversion imaging

using the family of truncated half-sine waves presented in section 3.2.2 (p.

87).

B.1 Setting of the Frequencies of Truncated Half-

Sine Waves

Here, we show that the simultaneous setting of the frequencies of two half-sine waves

makes it possible to increase the CTR in comparison with the only optimization

of the frequency f0. First, we check the existence of this maximum. Moreover,

we verify that it is not at the position f1 = f2. Fig. B.1 presents the empirical

search of frequencies f1 and f2 for a pressure level A0 of 400 kPa. We also report

automatic searches using the gradient algorithm by a black line and the Nelder-

Mead algorithm by a white line.

The automatic optimization of the CTR by the frequencies f1 and f2 is shown in

Fig. B.2. Fig. B.2a presents the optimization by the gradient algorithm while Fig.

B.2b presents the optimization by the Nelder-Mead algorithm with a white line.
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Figure B.1 – Simulation of the empirical search of the CTR maximum as a function of the frequencies f1 and f2
of the truncated half-sine waves in pulse inversion imaging by for a pressure level A0 = 400 kPa. The automatic
searches are reported in black for the gradient algorithm and in white for the Nelder-Mead algorithm.
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Figure B.2 – Simulations of the automatic optimizations using the frequencies f1 and f2 of the truncated half-sine
waves in pulse inversion imaging for different pressure levels A0 by the algorithm based on the gradient (a) and the
Nelder-Mead (b). The frequencies f1 are written in solid lines, while the frequencies f2 are dotted.
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Finally, we present the synthetic image with the suboptimal excitation that we

calculated previously.=
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Figure B.3 – Synthetic image in pulse inversion imaging for a pressure level of A0 = 400 kPa and with the optimal
values of f1,opt and f2,opt.

B.2 Setting of the Amplitude Ratio Between the

Truncated Half-Sine Waves
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Figure B.4 – Simulations of the optimizations using the amplitude ratio α ratio in pulse inversion imaging for different
pressure levels A0. (a) Empirical searches of the CTR maxima as a function of α. The automatic optimization path
for the pressure level A0 = 400 kPa is marked in black. (b) Automatic search of CTR using α by an algorithm using
the gradient.

This third optimization in pulse inversion imaging sets the ratio α by considering

the values of the frequencies f1,opt and f2,opt obtained in the previous optimization.
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Fig. B.4a represents the CTR as a function of the α ratio and for different pressure

levels A0. At the top of the Fig. B.4b, the CTR is represented during the k iterations,

while at the bottom of the figure the associated αk parameter is represented. The

optimal α ratio is very slightly different from 1.

The image obtained for this ratio α is shown in Fig. B.5.
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Figure B.5 – Synthetic image in pulse inversion imaging for a pressure level of A0 = 400 kPa and with the optimal
values of f1,opt and f2,opt, and after optimization of α.

B.3 Setting of the Frequencies and the Amplitude

Ratio of the Truncated Half-Sine Waves

This last proposition of parameters for the pulse inversion imaging proposes to

simultaneously optimize the frequencies f1, f2 and the ratio α of the amplitudes

of the truncated half-sine waves. Fig. B.6 represents the CTR as a function of the

k iterations at the bottom, the frequencies of the truncated half-sine waves followed

by the α which set the amplitudes. First, this optimization offers a higher CTR than

the previous optimization. Then the speed of convergence did not change. Finally,

note that f1 is smaller than f2.

We compute the synthetic image represented in Fig. B.7 for an excitation with

these optimal parameters.
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OF THE TRUNCATED HALF-SINE WAVES
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Figure B.6 – Simulations of automatic optimizations using the frequencies f1 and f2, and the amplitude ration α
in pulse inversion imaging for different pressure levels A0. The frequencies f1 are written in solid lines, while the
frequencies f2 are dotted.
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Figure B.7 – Synthetic image in pulse inversion imaging for a pressure level of A0 = 400 kPa after optimization of
f1, f2 and α.
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Appendix C

Optimal Command in Imaging by

Phase and Amplitude Modulation

T
his appendix presents the results of optimal command in imaging by phase and

amplitude modulation using the family of truncated half-sine waves presented

in section 3.2.3 (p. 94).

C.1 Setting of the Excitation Frequency

We start with optimization with only one parameter. The Fig. C.1 presents the CTR

optimization as a function of the excitation frequency f0. Fig. C.1a presents the

empirical maximum search of the CTR at the top, while the automatic optimization

is presented at the bottom.

First, as for the other imaging methods, we find the presence of a single maximum

in the CTR function. However, the optimal frequency is different from that of other

imaging methods. The pressure level A0 influences the CTR maximum and its

optimal frequency. When the pressure level is lower, the non-linearities in the tissue

are lower, which does not deteriorate the CTR. The automatic optimization of the

frequency finds the frequency which makes it possible to obtain the maximum CTR.

As an illustration, we have superimposed our optimization for the pressure level A0

(black line) to the empirical research curve in Fig. C.1a.

As with other imaging methods, we observe this result on synthetic images. The

first two are references (the first at the central frequency fc, the second at two

thirds of the central frequency fc), while the last one presents the results after our
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Figure C.1 – Simulations of optimizations using the excitation frequency f0 in imaging by phase and amplitude
modulation for different pressure levels A0. (a) Empirical investigations of the CTR maxima as a function of the
excitation frequency f0,k. The automatic optimization path for the pressure level A0 = 400 kPa is depicted in black.
(b) Automatic search of the CTR using the excitation frequency f0,k by an algorithm using the gradient.
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(c)

Figure C.2 – Synthetic images in imaging by phase and amplitude modulation for a pressure level of A0 = 400 kPa
where the excitation frequency f0 is (a) the center frequency fc of the transducer (fc = 3.5 MHz), (b) the two-thirds
of the center frequency fc of the transducer (2/3fc = 2.33 MHz), (b) the optimal frequency (f0,opt = 2.28 MHz).

Finally, we tested this principle experimentally. After a few iterations, the

algorithm converges to the CTR maximum.
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WAVES
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Figure C.3 – Experiment of automatic optimization using the frequency of excitation f0 in imaging by phase and
amplitude modulation by a gradient algorithm.

C.2 Setting of the Frequencies of Truncated Half-

Sine Waves

This second optimization consists in increasing by one degree of freedom by the

search for an optimal setting of f1 and f2.

Fig. C.4 represents the CTR as a function of the frequencies f1 and f2. The

CTR maximum is obtained when the frequencies f1 and f2 are close.

The second step is to find this maximum by one of our optimization algorithms.

Fig. C.5a presents the automatic optimization using our gradient algorithm, while

Fig. C.5b shows the optimization by the Nelder-Mead algorithm. In these two

figures, the CTR is represented as a function of the iterations k at the bottom, the

associated frequencies at the top.
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Figure C.4 – Simulation of the empirical search of the CTR maximum as a function of the frequencies f1 and f2 of
the truncated half-sine waves in imaging by phase and amplitude modulation for a pressure level A0 = 400 kPa. The
automatic searches are reported in black for the gradient algorithm and in white for the Nelder-Mead algorithm.
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Figure C.5 – Simulations of the automatic optimizations using the frequencies f1 and f2 of the truncated half-sine
waves in imaging by phase and amplitude modulation for different pressure levels A0 by the algorithm based on the
gradient (a) and the Nelder-Mead (b). The frequencies f1 are written in solid lines, while the frequencies f2 are
dotted.
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This result is observed on a synthetic image in Fig. C.6.
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Figure C.6 – Synthetic image in imaging by phase and amplitude modulation for a pressure level of A0 = 400 kPa
and with the optimal values of f1,opt and f2,opt.

C.3 Setting of the Amplitude Ratio Between the

Truncated Half-Sine Waves
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Figure C.7 – Simulations of the optimizations using the amplitude ratio α ratio in imaging by phase and amplitude
modulation for different pressure levels A0. (a) Empirical searches of the CTR maxima as a function of α. The
automatic optimization path for the pressure level A0 = 400 kPa is marked in black. (b) Automatic search of CTR

using α by an algorithm using the gradient.

This third optimization takes up the previous result, but optimizes the ratio α

which sets the amplitudes of the truncated half-sine waves. Fig. C.7a represents the

CTR as a function of the ratio α for different pressure levels A0. This parameter

155



PROOFREADIN
G

APPENDIX C. OPTIMAL COMMAND IN IMAGING BY PHASE AND
AMPLITUDE MODULATION

makes it possible to reach a new CTR maximum when α is slightly different from 1.

Fig. C.7b shows the automatic optimization that is associated.

As an illustration, let us observe the synthetic image (Fig. C.8) which offers the

optimal CTR in this case.
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Figure C.8 – Synthetic image in imaging by phase and amplitude modulation for a pressure level of A0 = 400 kPa
and with the optimal values of f1,opt and f2,opt, and after optimization of α.

C.4 Setting of the Frequencies and the Amplitude

Ratio of the Truncated Half-Sine Waves

Finally, this last optimization, represented in Fig. C.9, proposes a simultaneous

adjustment of the frequencies f1, f2 and the ratio α of the amplitudes of the

truncated half-sine waves.

We compute the synthetic image (Fig. C.10) where the excitation is determined

with the optimal parameters.
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C.4. SETTING OF THE FREQUENCIES AND THE AMPLITUDE RATIO
OF THE TRUNCATED HALF-SINE WAVES
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Figure C.9 – Simulations of automatic optimizations using the frequencies f1 and f2, and the amplitude ration α in
imaging by phase and amplitude modulation for different pressure levels A0. The frequencies f1 are written in solid
lines, while the frequencies f2 are dotted.
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Figure C.10 – Synthetic image in imaging by phase and amplitude modulation for a pressure level of A0 = 400 kPa
after optimization of f1, f2 and α.
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APPENDIX C. OPTIMAL COMMAND IN IMAGING BY PHASE AND
AMPLITUDE MODULATION
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Appendix D

Optimal Command of Encoded

Excitation for cMUTs

T
his appendix presents the results of the optimal command of the encoded

excitations for the cMUTs presented in section 5.3 (p. 121).

D.1 Optimal Command for Second Harmonic Imaging

The command that we propose consists in using the half resonance frequency, as

shown in the Fig. 5.4. Optimal command is sought by a target signal with this new

frequency.

Fig. D.1 represents the optimal command at the half resonance frequency in the

same form as before.

The target signal is correctly reached with a mean square error MSE of −21 dB.

Spectrally the second harmonic is reduced by 20 dB. It is important to note that our

method reduces the second harmonic, but also the third harmonic; what existing

methods can not do.

We also present an optimization where the cMUT output do not follows the

target signal visibly. In this case, the amplitude of the target signal was ±17,5%.

The mean square error MSE still reaches −17 dB. In contrast with the case of the

forced regime, the cMUT output is not cut the top off, but the membrane can

not oscillate as slowly as the target signal. Spectrally, the second harmonic is still

reduced by 10 dB, but with an increase of the third harmonic.

159



PROOFREADIN
G

APPENDIX D. OPTIMAL COMMAND OF ENCODED EXCITATION FOR
CMUTS
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Figure D.1 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is
a sine wave signal of a frequency fres/2 and amplitude representing a membrane displacement umb of ±10% of the
size of the cavity. (a) Mean quadratic error between the target signal MSE and the membrane displacement umb

during the iterations k with the input parameters of the system. (b) cMUT command at the top. Normalized cMUT
output in relation to the cavity size, target signal and error at the bottom. (c) Spectrum of the cMUT command at
the top. Spectrum of target signal and cMUT output before and after optimization at the bottom.

D.2 Optimal Command for Pulse Inversion Imaging

As for the forced regime, we optimize with an target where the phase is opposite in

comparison with this one presented in Fig. D.3. The optimal command correctly

reaches again the target signal.

D.3 Optimal Command for Chirp Reversal Imaging

In the context of imaging by chirp reversal, we also tested the case where the

frequency modulated signal (20 GHz/s) is centered at the half resonant frequency.

Figs. D.4 and D.5 represent optimizations with targets where the modulation

slopes are inverted.

Targets are correctly reached. We can notice that the error is slightly more

important for the lower frequencies due to transient phenomena between the forced

regime and the resonant regime.
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D.3. OPTIMAL COMMAND FOR CHIRP REVERSAL IMAGING
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Figure D.2 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is a
sine wave signal of a frequency fres/2 and amplitude representing a membrane displacement umb of ±17.5% of the
size of the cavity. (a) Mean quadratic error between the target signal MSE and the membrane displacement umb

during the iterations k with the input parameters of the system. (b) cMUT command at the top. Normalized cMUT
output in relation to the cavity size, target signal and error at the bottom. (c) Spectrum of the cMUT command at
the top. Spectrum of target signal and cMUT output before and after optimization at the bottom.
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Figure D.3 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached is a
sine wave signal of a frequency fres/2, in opposite phase to the target signal presented in Fig. D.1b, and amplitude
representing a membrane displacement umb of ±10% of the size of the cavity. (a) Mean quadratic error between the
target signal MSE and the membrane displacement umb during the iterations k with the input parameters of the
system. (b) cMUT command at the top. Normalized cMUT output in relation to the cavity size, target signal and
error at the bottom. (c) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output
before and after optimization at the bottom.
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Figure D.4 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached
is a sinusoidal frequency-modulated signal where f0 = fres/2 and β1 = 20 GHz/s, and amplitude representing a
membrane displacement umb of ±10% of the size of the cavity. (a) Mean quadratic error between the target signal
MSE and the membrane displacement umb during the iterations k with the input parameters of the system. (b)
cMUT command at the top. Normalized cMUT output in relation to the cavity size, target signal and error at the
bottom. (c) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output before and
after optimization at the bottom.
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Figure D.5 – Simulation of the iterative optimization of the cMUT output when the target signal to be reached
is a sinusoidal frequency-modulated signal where f0 = fres/2 and β1 = −20 GHz/s, and amplitude representing a
membrane displacement umb of ±10% of the size of the cavity. (a) Mean quadratic error between the target signal
MSE and the membrane displacement umb during the iterations k with the input parameters of the system. (b)
cMUT command at the top. Normalized cMUT output in relation to the cavity size, target signal and error at the
bottom. (c) Spectrum of the cMUT command at the top. Spectrum of target signal and cMUT output before and
after optimization at the bottom.
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Sébastien Ménigot

Optimal Command Applied to Ultrasound Imaging

System

Résumé: Les systèmes d’imagerie médicale ultrasonore ont considérablement amélioré le diagnostic

clinique par une meilleure qualité des images grâce à des systèmes plus sensibles et des post-traitements. La

communauté scientifique de l’imagerie ultrasonore a consenti à un très grand effort de recherche sur les post-

traitements et sur le codage de l’excitation sans s’intéresser, outre mesure, aux méthodes de commande

optimale. Ce travail s’est donc légitimement tourné vers les méthodes optimales basées sur l’utilisation

d’une rétroaction de la sortie sur l’entrée. Pour rendre applicable ces méthodes, ce problème complexe de

commande optimale a été transformé en un problème d’optimisation paramétrique sous-optimal et plus

simple. Nous avons appliqué ce principe au domaine de l’imagerie ultrasonore : l’échographie, l’imagerie

harmonique native et l’imagerie harmonique de contraste avec ou sans codage de la commande.

La simplicité de l’approche nous a permis, par une modification de la fonction de coût, de l’adapter à

l’imagerie harmonique. Cette adaptation montre que la méthode peut être appliquée à l’imagerie ultrasonore

en générale.

Aujourd’hui, les enjeux de l’imagerie ultrasonore portent non seulement sur les traitements des excitations

ou des images mais aussi sur les capteurs. Ce point nous a conduit naturellement à rechercher la commande

optimale des transducteurs capacitifs (cMUT) afin de les adapter à une utilisation plus large en imagerie

ultrasonore codée. Nos méthodes de compensation et de codage par commande optimale procurent des

résultats très prometteurs qui vont au delà de nos espérances.

Le champ d’applications de nos méthodes de codage optimal est large et nous n’en voyons pas

forcément encore toutes les limites. L’atout majeur de nos approches est leur simplicité d’utilisation et

d’implémentation. En effet, elles ne nécessitent pas d’informations a priori difficilement accessibles sur les

outils utilisés ou milieux explorés. Notre système s’adapte automatiquement aux variations qui peuvent

être liées au vieillissement du capteur ou à la modification du milieu exploré.

Mots clés: Boucle fermée, commande optimale, optimisation, imagerie ultrasonore, système adaptatif.

Abstract: Medical ultrasound imaging systems have greatly improved the clinical diagnosis by improving

the image quality thanks to more sensitive systems and post-processings. The scientific community has made

a great effort of research on post-processing and on encoding the excitation. The methods of the optimal

control have been neglected. Our work has focused on the optimal methods based on the feedback from

output to input. We have transformed the complex problem of optimal control into an easier suboptimal

parametric problem. We apply the principle of optimal control to the ultrasound imaging, the ultrasound

harmonic imaging and to the constrast harmonic imaging with or without encoding.

The simplicity of the method has allowed us to adapt it to harmonic imaging by a change in the cost

function. This adaptation shows that our method can usually be applied to the ultrasound imaging.

Nowadays, the stakes of the ultrasound imaging focus not only on the excitation processings or image

processings but also on the sensors. This point naturally leads us to seek the optimal control of the capacitive

transducers (cMUT) in order to adapt them to the encoded ultrasound imaging. Our compensation and

encoding methods by optimal control provide very promising results that go beyond our expectations.

The application scope of our methods of optimal control is large and we do not see all the limits yet.

The main advantage of our approaches is the easiness of their use and of their implementation. Indeed,

our approaches do not require any a priori knowledge on system and medium explored. Our system

automatically adapts itself to the changes which may be related to sensor ageing or to the medium change.

Keywords: Adaptive system, closed-loop, optimal control, optimization, ultrasound imaging.
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